Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle MAO=\angle MHO=90\Rightarrow MAHO\) nội tiếp
b) Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle CMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{MA}{MC}\)
c) Vì MAHO nội tiếp \(\Rightarrow\angle BHA=\angle MOA\)
Ta có: \(\angle ABH=180-\angle MBA=180-\angle MAC=\angle AMO\) \((AC\parallel MO)\)
mà \(\angle MOA+\angle AMO=90\Rightarrow\angle BHA+\angle ABH=90\Rightarrow\angle BAH=90\)
d) MO cắt CD tại E
Vì \(OE\parallel AC\) mà \(AC\bot CD\left(\angle ACD=90\right)\Rightarrow OE\bot CD\)
mà \(OC=OD\Rightarrow OE\) là trung trực CD
mà \(M\in OE\Rightarrow\angle DMO=\angle CMO=\angle ACH\) \((MO\parallel AC)\)
Ta có: \(\angle DOM=180-\angle MOA=180-\angle MHA\left(MAHOnt\right)=\angle AHC\)
Xét \(\Delta AHC\) và \(\Delta DOM:\) Ta có: \(\left\{{}\begin{matrix}\angle DOM=\angle AHC\\\angle DMO=\angle ACH\end{matrix}\right.\)
\(\Rightarrow\Delta AHC\sim\Delta DOM\left(g-g\right)\)
b: Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc M chung
=>ΔMAB đồng dạng với ΔMCA
=>MA^2=MB*MC
ΔMAO vuông tại A có AH vuông góc OM
nên MH*MO=MA^2=MB*MC
mình bổ sung OM vuông AB nhé
a, Ta có : AM = MB ( tc tiếp tuyến cắt nha )
OA = OB => OM là đường trung trực đoạn AB
=> OM vuông AB
b, Xét tam giác MBC và tam giác MDB có :
^M _ chung ; ^MBC = ^MDB ( cùng chắn cung BC )
Vậy tam giác MBC ~ tam giác MDB ( g.g )
=> MB/MD=MB/MC => MB^2 = MD.MC (1)
c, Vì MB là tiếp tuyến đường tròn (O) với B là tiếp điểm
=> ^MBO = 900
Xét tam giác MBO vuông tại B, đường cao BH
Ta có : MB^2 = MH . MO ( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra MC . MD = MH . MO
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)
Hình vẽ:
a, \(AH\perp MC\Rightarrow AH=HD\)
Ta có \(\left\{{}\begin{matrix}OA=OD\\HA=HD\end{matrix}\right.\Rightarrow OM\) là trung trực của \(AD\)
\(\Rightarrow MA=MD\Rightarrow\Delta OAM=\Delta ODM\left(c-c-c\right)\)
\(\Rightarrow MD\perp OD\)
Hay MD là tiếp tuyến
b, \(\Delta OAM\) vuông tại A
\(\Rightarrow O;A;M\) thuộc đường tròn đường kính OM
Lại có \(\Delta ODM\) vuông tại D
\(\Rightarrow O;D;M\) thuộc đường tròn đường kính OM
Dễ chứng minh được B là trung điểm OM
\(\Rightarrow M;A;O;D\in\left(B;R\right)\)
c, Vì \(\widehat{BAC}=90^o\Rightarrow\Delta BAC\) vuông tại A
\(\Rightarrow HB.HC=HA^2\)
Mà \(\Delta OAM\) vuông tại A \(\Rightarrow HM.HO=HA^2\)
\(\Rightarrow HB.HC=HM.HO\)