1/x+x/6+\(\sqrt{8x}\) =168^x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
a: ĐKXĐ: \(x^2-5x-6>=0\)
=>(x-6)(x+1)>=0
=>\(\left[{}\begin{matrix}x>=6\\x< =-1\end{matrix}\right.\)
\(\sqrt{x^2-5x-6}=x-2\)
=>\(\left\{{}\begin{matrix}x-2>=0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=6\\-5x-6=-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\-x=10\end{matrix}\right.\)
=>\(x\in\varnothing\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-8x+16}=4-x\)
=>\(\sqrt{\left(x-4\right)^2}=4-x\)
=>|x-4|=4-x
=>x-4<=0
=>x<=4
c: ĐKXĐ: \(x^2-2x>=0\)
=>x(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =0\end{matrix}\right.\)
\(\sqrt{x^2-2x}=2-x\)
=>\(\left\{{}\begin{matrix}x^2-2x=\left(2-x\right)^2\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x=x^2-4x+4\\x< =2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=4\\x< =2\end{matrix}\right.\Leftrightarrow x=2\left(nhận\right)\)
d: ĐKXĐ: x>=-27/2
\(\sqrt{2x+27}-6=x\)
=>\(\sqrt{2x+27}=x+6\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+6\right)^2=2x+27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+12x+36-2x-27=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\x^2+10x+9=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-6\\\left(x+9\right)\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-6\\x\in\left\{-9;-1\right\}\end{matrix}\right.\)
=>x=-1
Kết hợp ĐKXĐ, ta được: x=-1
a.
\(\sqrt{x^2-5x-6}=x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2-5x-6=\left(x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-5x-6=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=-10\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
b.
\(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}=4-x\)
\(\Leftrightarrow\left|x-4\right|=-\left(x-4\right)\)
\(\Leftrightarrow x-4\le0\)
\(\Rightarrow x\le4\)
Lời giải:
a. Để biểu thức xác định thì:
$x^2-x-6\geq 0$
$\Leftrightarrow (x+2)(x-3)\geq 0$
$\Leftrightarrow x\geq 3$ hoặc $x\leq -2$
b. Để biểu thức xác định thì:
$4x-x^2-5\geq 0$
$\Leftrightarrow x^2-4x+5\leq 0$
$\Leftrightarrow (x-2)^2+1\leq 0$
$\Leftrightarrow (x-2)^2\leq -1< 0$ (vô lý)
Vậy không tồn tại $x$ để bt xác định
c. Để biểu thức xác định thì:
$x^2-8x+15>0$
$\Leftrightarrow (x-3)(x-5)>0$
$\Leftrightarrow x>5$ hoặc $x< 3$
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-2\end{matrix}\right.\)
b) ĐKXĐ: \(x\in\varnothing\)
c) ĐKXĐ: \(\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)
b. Bạn coi lại đề, pt này nghiệm rất xấu
c.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)