cho hình vuông ABCD, điểm e nằm bất kì trên đoạn CD, Tia phân giác góc DAE cắt CD tại M, phân giác góc BAE cắt BC tại NCM MN vuông góc AEtính chu vi CMN biết AB a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có
AM chung
\(\widehat{DMA}=\widehat{HMA}\)
Do đó: ΔADM=ΔAHM
=>AD=AH
mà AD=AB
nên AH=AB
b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có
AN chung
AH=AB
Do đó: ΔAHN=ΔABN
c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)
\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)
\(=\dfrac{1}{2}\cdot90^0=45^0\)