Cho đường tròn (O) đường kính AB, C là điểm thuộc đường tròn (O). Tiếp tuyến tại B,C của (O) cắt nhau tại M. OM cắt BC tại H. K là trung điểm MH, BK cắt đường tròn (O) tại E. Chứng minh A,H,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MC là các tiếp tuyến
Do đó: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BD tại C
=>ΔACD vuông tại C
Ta có: \(\widehat{MDC}+\widehat{MAC}=90^0\)(ΔACD vuông tại C)
\(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}=90^0\)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MDC}=\widehat{MCD}\)
=>MC=MD
mà MC=MA
nên MA=MD
=>M là trung điểm của AD
b: Xét (O) có
MC,MA là các tiếp tuyến
Do đó: OM là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{MOC}\)
Ta có: tia OC nằm giữa hai tia OM và ON
=>\(\widehat{MOC}+\widehat{NOC}=\widehat{MON}=90^0\)
=>\(\widehat{NOC}=90^0-\widehat{MOC}\)
Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{COM}+\widehat{COB}=2\cdot90^0=2\cdot\widehat{COM}+2\cdot\widehat{CON}\)
=>\(\widehat{COB}=2\cdot\widehat{CON}\)
=>ON là phân giác của góc COB
Xét ΔOBN và ΔOCN có
OB=OC
\(\widehat{BON}=\widehat{CON}\)
ON chung
Do đó: ΔOBN=ΔOCN
=>\(\widehat{OBN}=\widehat{OCN}=90^0\)
=>NB là tiếp tuyến của (O)
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại K
Xét ΔOAM vuông tại A có AK là đường cao
nên \(OK\cdot OM=OA^2=R^2\)
Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{MAO}=90^0\)
\(\widehat{KAI}+\widehat{OIA}=90^0\)(ΔAKI vuông tại K)
mà \(\widehat{OAI}=\widehat{OIA}\)
nên \(\widehat{MAI}=\widehat{KAI}\)
=>AI là phân giác của góc MAB
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB
=>MK là phân giác của góc AMB
Xét ΔMAB có
MK,AI là các đường phân giác
MK cắt AI tại I
Do đó: I là tâm đường tròn nội tiếp ΔMAB
a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))
=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)
Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900
Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)
(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn
Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).
b) Gọi P là chân đường vuông góc từ D kẻ đến OB
Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)
Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD
=> ^IOP=^IDP (=^IDK) (4)
(3) + (4) => ^ICB=^IDK (đpcm).
c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn
=> ^DIH=^DCH hay ^DIH=^DCB.
Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB
Mà 2 góc trên đồng vị => IH // EB hay IH // EK
Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK
=> H là trung điểm DK (đpcm).