K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Ta có \(a^3+b^3+c^3-3abc=a^3+b^3+c^3-abc-abc-abc+ac^2+a^2c-ac^2-a^2c+ab^2+a^2b-ab^2-a^2b+b^2c+bc^2-b^2c-bc^2=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)-ab\left(a+b+c\right)-bc\left(a+b+c\right)-ac\left(a+b+c\right)=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\)=0 vạy a+b+c=0

23 tháng 7 2018

ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

mà a+b+c=0

\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)

2 tháng 1 2019

Ta có: a+b+c =0 => c= -a -b

Ta có a3 +a2c -abc + b2c +b3

= (a3 +b3) +c(a2 -ab +b2)

= (a3 +b3) +(-a -b)(a2 -ab +b2)

= (a3 +b3) -(a +b)(a2 -ab +b2)

= (a3 +b3) -a3 -b3 = 0

Vậy a3 +a2c -abc +b2c +b3 =0

4 tháng 11 2015

Ta có: a^3 + a^2c – abc + b^2c + b^3 = (a^3 + b^3) + (a^2c – abc + b^2c) = (a + b)( a^2 – ab + b^2) + c(a62 – ab + b^2) = (a + b + c)(a^2 – ab + b^2) = 0 ( Vì a + b + c = 0 theo giả thiết) Vậy: a3 +a2c – abc + b2c + b3 = 0

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.

 

12 tháng 7 2018

Ta có :

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\) ( Luôn đúng vì \(a+b+c=0\) )

Wish you study well !!

7 tháng 5 2015

bạn chép lại đề nha

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

7 tháng 5 2015

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

7 tháng 5 2015

 

bạn chép lại đề nha

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

 

14 tháng 10 2017

dfgdfg