một hộp đựng 9 tấm bìa được đánh số từ 1 đến 9. chọn ngẫn nhiên 4 tấm bìa.tính xác suất để tổng các số ghi trên 4 tấm bìa là 1 số lẻ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD: Số phần tử của không gian mẫu là: Ω = C 11 4
Gọi A là biến cố: “Tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”
Khi đó số tấm lẻ được chọn là số lẻ.
Trong 11 số từ 1 đến 11 có 6 số lẻ và 5 số chẵn.
Đáp án A
Tổng cả 4 tấm thẻ là 1 số lẻ khi
+) Có 1 thẻ là lẻ, 3 thẻ còn lại là chẵn, suy ra có C 6 1 C 5 3 = 60 cách chọn.
+) Có 3 thẻ là lẻ, 1 thẻ là chẵn, suy ra có C 5 1 C 6 3 = 100 cách chọn.
Suy ra
Đáp án A
Tổng cả 4 tấm thẻ là 1 số lẻ khi
+) Có 1 thẻ là lẻ, 3 thẻ còn lại là chẵn, suy ra có C 6 1 C 5 3 = 60 cách chọn.
+) Có 3 thẻ là lẻ, 1 thẻ là chẵn, suy ra có C 5 1 C 6 3 = 100 cách chọn.
Suy ra P = 60 + 100 C 11 4 = 16 33
Số phần tử của không gian mẫu:
n Ω = C 11 6 = 462
Gọi A:”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.Để có tổng là một số lẻ ta có 3 trường hợp.
Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: 6 . C 5 5 = 6 cách.
Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: C 6 3 . C 5 3 = 200 cách.
Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: C 6 5 . 5 = 30 cách.
Do đó n(A)= 6+200+30=236.
Vậy P A = 236 462 = 118 231
Chọn đáp án D.
Số phần tử của không gian mẫu là .
Gọi A:”tổng số ghi trên 6 tấm thẻ ấy là một số lẻ”.
Từ 1 đến 11 có 6 số lẻ và 5 số chẵn.Để có tổng là một số lẻ ta có 3 trường hợp.
Trường hợp 1: Chọn được 1 thẻ mang số lẻ và 5 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 3 thẻ mang số lẻ và 3 thẻ mang số chẵn có: cách.
Trường hợp 2: Chọn được 5 thẻ mang số lẻ và 1 thẻ mang số chẵn có: cách.
Do đó n(A)=6+200+30=236
Vậy .
Chọn D.
Không gian mẫu \(C_9^4\)
Các tấm bìa gồm 5 tấm số lẻ và 4 tấm số chẵn
Để tổng 4 số là số lẻ khi số số lẻ là lẻ
\(\Rightarrow\) có 1 hoặc 3 tấm bìa mang số lẻ
Số biến cố thỏa mãn: \(C_5^1C_4^3+C_5^2C_4^2\)
Xác suất: \(P=\dfrac{C_5^1C_4^3+C_5^2C_4^2}{C_9^4}\)