GIẢI PHƯƠNG TRÌNH :
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
ĐKXĐ: \(0\le x\le5\).
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).
PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).
+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).
+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).
Vậy...
ĐK: \(0\le x\le5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)
TH2: \(ab+2a+2b=8\)
\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)
\(\sqrt{5-x}+\sqrt{x}=3\)
\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
Vậy ...
nhờ vào năng lực rinegan , ta có thể đoán dc
\(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)
vậy pt sẽ như sau
\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "
\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)
\(\left(1+x\right)\left(8-x\right)=36\)
đến đây m có thể tự làm
c) \(\sqrt{x+5}=5-x^2\)
\(x+5=\left(5-x\right)^2\)
\(x+5=x^4-10x^2+25\) " rồi xong pt bậc 4 :)
\(x^4-10x^2-x+20=0\)
\(x^4=10x^2+x-20\)
\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)
\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)
\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)
\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)
\(\Delta=1-40m^2+800-8m^3+160m\)
\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)
lấy m= -9/2 , cho nhanh thay vào ta đươc
\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)
\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)
\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)
\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)
đến đây cậu có thể làm tiếp :)
câu B hơi gắt cần time suy nghĩ :)
b. Câu hỏi của Lê Đức Anh - Toán lớp 9 - Học toán với OnlineMath