K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2022

\(\sqrt{x}-1=mx\sqrt{x}-2mx+1\)

\(\Leftrightarrow mx\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(mx-1\right)=0\)

\(\Leftrightarrow mx-1=0\) (do \(x\ne4\Rightarrow\sqrt{x}-2\ne0\))

Để có x thỏa mãn bài toán

\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\\dfrac{1}{m}\ne1\\\dfrac{1}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)

28 tháng 8 2021

hello

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

a. Đặt $f(x)=x+\sqrt{2x^2+1}$

$f'(x)=1+\frac{2x}{\sqrt{2x^2+1}}=0\Leftrightarrow x=\frac{-1}{\sqrt{2}}$

Lập BBT ta thấy:

$f_{\min}=f(\frac{-1}{\sqrt{2}})=\frac{\sqrt{2}}{2}$

\(f(x)\to +\infty \) khi \(x\to +\infty; x\to -\infty \)

Do đó $x+\sqrt{2x^2+1}=m$ có nghiệm khi $m\geq \frac{\sqrt{2}}{2}$

b. TXĐ: $x\in [3;+\infty)$

BPT $\Leftrightarrow m(x-1)\leq \sqrt{x-3}+1$

$\Leftrightarrow m\leq \frac{\sqrt{x-3}+1}{x-1}$

Xét $f(x)=\frac{\sqrt{x-3}+1}{x-1}$
$f'(x)=0\Leftrightarrow x=7-2\sqrt{3}$

Lập BBT ta thấy $f_{\max}=f(7-2\sqrt{3})=\frac{1+\sqrt{3}}{4}$
Để BPT có nghiệm thì $m\leq \frac{1+\sqrt{3}}{4}$