tìm các stn có 3 chữ số sao cho khi chia số đó cho 17 dư 8,chia 25 dư 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O número é 136 e 400 está procurando
Uma vez que a 8 x 17 = 136
16 x 25 = 400
Assim número de 3 dígitos é 136 e 400 estão procurando.
gọi số tự nhiên cần tìm là a ( a \(\in\)N* )
theo bài ra : a chia 17 dư 8
\(\Rightarrow\)a = 17k1 + 8 ( k1 \(\in\)N )
a chia 25 dư 16
\(\Rightarrow\)a = 25k2 + 16 ( k2 \(\in\)N )
\(\Rightarrow\)a + 9 \(⋮\)17 ; 25
\(\Rightarrow\)a + 9 \(\in\)BC ( 17 ; 25 )
BCNN ( 17 ; 25 ) = 425
\(\Rightarrow\)a + 9 = B ( 425 ) = { 0 ; 425 ; 850 ; ... }
Ta thấy 425 và 850 là hai số thỏa mãn bài ra
\(\Rightarrow\)a = { 416 ; 841 }
Vậy số tự nhiên cần tìm là 416 và 841
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.
$a-8\vdots 17$
$\Rightarrow 25k+8\vdots 17$
$\Rightarrow 25k+25\vdots 17$
$\Rightarrow 25(k+1)\vdots 17$
$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.
Vậy $a=25k+16=25(17m-1)+16=425m-9$
Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$
$\Rightarrow 0< m<3$
$\Rightarrow m=1, 2$
$\Rightarrow a=416$ hoặc $a=841$
chia a cho 17 thì dư 8 thì suy ra a+9 chia hết cho 17
chia a cho 25 thì dư 16 suy ra a+9 chia hết cho 25
suy raa+9 chia hết cho 17 và 25
suy raa+9 thuộc BC(17;25)
17 = 17 vì 17 là số nguyên tố
25 = 52
suy ra BCNN(17;25)=17.52=425
suy ra a+9 thuộc B(425)={0;425;..}
suy ra a thuộc {-9;416;....}
vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416
vậy a = 416
TA có a chia cho 17 dư 8 , chia 25 dư 16
Suy ra a + 9 chia hết cho 17 ; 25
a + 9 thuộc BC ( 17 , 25 )
17 = 17
25 = 5^2
BCNN ( 17 , 25 ) = 5^2 . 17 = 425
B ( 425 ) = ( 0 ; 425 ; 850; 1275 ... )
Do a là số có 3 chữ số .SUy ra :
* a + 9 = 425 * a + 9 = 850
a = 425 - 9 a = 850-9
a = 416 a = 841
Vậy 2 số đó là 416 và 841
Gọi số tự nhiên có ba chữ số cần tìm là \(n\)
Ta có:
\(n:17\left(R=8\right)\Rightarrow\left(n+9\right)⋮17\)
\(n:25\left(R=16\right)\Rightarrow\left(n+9\right)⋮25\)
\(\Rightarrow\left(n+9\right)⋮\left(17;25\right)\Leftrightarrow\left(n+9\right)=BCNN\left(17,25\right)\Leftrightarrow\left(n+9\right)=425\)
\(\Rightarrow n+9=425\)
\(\Rightarrow n=416\)
Gọi số tự nhiên cần tìm đó là x ; \(x\in N\)
Ta có : \(x-8⋮17\); \(x-16⋮25\)và \(100< x< 1000\)
\(\Rightarrow x+9⋮17\)và \(x+9⋮25\) \(\Rightarrow x+9\in BC\left(17,25\right)\)và \(100< x< 1000\)
\(BCNN\left(17,25\right)=425\)và \(BC\left(17,25\right)=\left\{0;425;850;....\right\}\)
Với \(x+9=425\Rightarrow x=425-9=416\)
Với \(x+9=850\Rightarrow x=850-9=841\)
\(\Rightarrow\)số tự nhiên có 3 chữ số cần tìm là 416 và 841