K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

c) x^2 -x-20=0

\(\Leftrightarrow x^2-5x+4x-20=0\)

\(\Leftrightarrow\left(x^2+4x\right)-\left(5x+20\right)=0\)

\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)

Vậy...

23 tháng 8 2021

a, \(A=\left|x-1\right|+\left|x+1\right|+\left|x-2\right|+\left|x-3\right|\ge\left|1-x+x+1\right|+\left|2-x+x-3\right|=3\)

Dấu ''='' xảy ra khi \(\left(1-x\right)\left(x+1\right)\ge0;\left(2-x\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le1;2\le x\le3\Leftrightarrow-1\le x\le3\)

Vậy GTNN của A bằng 3 tại -1 =< x =< 3 

b, \(B=\left|x+1\right|+\left|x-1\right|+\left|2x-5\right|\ge\left|x+1+x-1\right|+\left|2x-5\right|\)

\(=\left|2x\right|+\left|2x-5\right|=\left|2x\right|+\left|5-2x\right|\ge\left|2x+5-2x\right|=5\)

Dấu ''='' xảy ra khi \(\left(x+1\right)\left(x-1\right)\ge0;2x\left(5-2x\right)\ge0\Leftrightarrow;0\le x\le\frac{5}{2}\)

Vậy GTNN của B bằng 5 tại 0 =< x =< 5/2 

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 1:

a. $2x-10-[3x-14-(4-5x)-2x]=2$

$2x-10-3x+14+(4-5x)+2x=2$

$-x-10+14+4-5x+2x=2$

$-4x+8=2$

$-4x=-6$

$x=\frac{-6}{-4}=\frac{3}{2}$

b. Đề sai. Bạn xem lại. 

c.

$|x-3|=|2x+1|$

$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$

$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 2:

a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$

Ta có:

$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)

b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$

Ta có:

$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)

c.

Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.

Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$

Tổng của $n$ số nguyên liên tiếp là:

$a+(a+1)+(a+2)+....+(a+n-1)$

$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$

$=n[a+\frac{n-1}{2}]$

Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên

$\Rightarrow a+\frac{n-1}{2}$ nguyên

$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$

 

30 tháng 11 2017

\(2x\left|x-1\right|+5x\left|x-1\right|-8x\left|x-1\right|=7\)

\(\left|x-1\right|.\left(2x+5x-8x\right)=7\)

\(\left|x-1\right|.\left(-x\right)=7\)

\(\left|x-1\right|=\frac{-7}{x}\) ( với \(x\ne0\))