M = \(\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)( Với \(x\ne\pm2;x\ne-1\))
a, Rút gọn biểu thức M
b, Tìm giá trị của x để \(M=\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Bài làm
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(P=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x+2}\)
\(P=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{x+1}\)
\(P=\frac{x+1}{x-2}\)
b) Thay \(x=\frac{1}{2}\)vào P ta được:
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}\)
\(P=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{2}{2}}\)
\(P=\frac{3}{2}:\frac{-1}{2}\)
\(P=\frac{3}{2}.\left(-2\right)\)
\(P=-3\)
Vậy giá trị của \(P=-3\) tại \(x=\frac{1}{2}\)
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne-1;x\ne\pm2\right)\)
\(\Leftrightarrow P=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)
\(\Leftrightarrow P=\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)
Vậy \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)
b) Ta có \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)
Thay x=\(\frac{1}{2}\left(tm\right)\)vào P ta có:
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{4}{2}}=\frac{\frac{3}{2}}{\frac{-3}{2}}=\frac{3}{2}:\frac{-3}{2}=-1\)
Vậy \(P=-1\)khi x=\(\frac{1}{2}\)
Câu 1 :
a, \(\frac{3}{x+3}-\frac{x-6}{x^2+3x}=\frac{3x-x+6}{x\left(x+3\right)}=\frac{2x+6}{x\left(x+3\right)}=\frac{2}{x}\)
b, \(\frac{2x^2-x}{x-1}+\frac{x+1}{1-x}+\frac{2-x^2}{x-1}=\frac{2x^2-x-x-1+2-x^2}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
Bài 2 :
a, Với \(x\ne\pm2\)
\(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(1-\frac{x}{x+2}\right)\)
\(=\left(\frac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x+2-x}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{-3}{x-2}\)
b, Thay x = -4 vào biểu thức trên ta được :
\(-\frac{3}{-4-2}=-\frac{3}{-6}=\frac{1}{2}\)
c, Để A \(\inℤ\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
a) \(A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(A=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-8x+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
\(a,A=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}\)
\(=\frac{4x}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)
\(=\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-8x+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x^2-11x+10}{\left(x-2\right)\left(x+2\right)}\)
a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)
ĐKXĐ \(x\ne-2,-3,-4\)
=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)
=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)
=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)
=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0
=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0
=> -3x2 - 11x - 8 = 0
=> -3x2 - 3x - 8x - 8 = 0
=> -3x(x + 1) - 8(x + 1) = 0
=> (x + 1)(-3x - 8) = 0
=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)
Vậy ...
b) Thiếu dữ liệu cuả đề
c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)
ĐKXĐ \(x\ne-2;-3\)
=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)
=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)
=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)
=> 4x2 + 29x + 52 = x + 4
=> 4x2 + 29x + 52 - x - 4 = 0
=> 4x2 + 28x + 48 = 0
=> 4(x2 + 7x + 12) = 0
=> x2 + 7x +12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 3)(x + 4) = 0
=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
Mà \(x\ne-2,-3\)nên x = -3 loại
Vậy x = -4
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow27x-2x-4x-27+2=0\)
\(\Leftrightarrow21x=25\)
\(\Leftrightarrow x=\frac{25}{21}\)
Hết ý tưởng,phá tung ra,sai chỗ nào tự sửa nhé !
\(\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2+3\left(x+2\right)\left(x-3\right)-\left(5x-1\right)\left(x-4\right)}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{2x^2+4x+2+3x^2-3x-18-5x^2-21x+4}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{\left(4x-3x-21x\right)+\left(2-18+4\right)}{6}=\frac{56}{6}\)
\(\Leftrightarrow-20x-12=56\)
\(\Leftrightarrow-20x=68\)
\(\Leftrightarrow x=-\frac{17}{5}\)
Tự check lại nhá
a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)
b) Với \(M=\frac{1}{4}\)ta có :
\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)
\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)