Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Xét Δcân ABC có:
AM là đg trung tuyến(GT)
➝M là trung điểm của BC (T/c dg trung tuyến)
Vì k đ/x với A qua M(GT)
➝M là trung điểm của AK (T/c đ/x điểm)
Xét tứ giác ABKC có:
M là trung điểm của AK(CMT)
M là trung điểm của BC(CMT)
➩ABKC là hình bình hành (tứ giác có 2 đg chéo đi qua 1 điểm là HBH)
mà AB=AC(△ABC cân tại A)
⇒ABKC là hình thoi (HBH có 2 cạnh= nhau là h.thoi)
⇒AK là phân giác của ∠BAC;KA là phân giác của ∠BKC;∠BAC=∠BKC(T/c h.thoi)
→∠BAK=∠AKC=∠KAC=∠BKA=\(\dfrac{1}{2}\) ∠BAC=\(\dfrac{1}{2}\)∠BKC
Xét ΔACK có:
∠AKC=∠KAC(CMT)
➞△ACK cân tại C(△ có 2 cạnh = nhau là △cân)
Vì ∠ACD là góc ngoài tại đỉnh C của △ACK
➜∠KAC+∠AKC=∠ACD
mà ∠AKC=∠BAK (CMT)
➞∠BAK+∠KAC=∠BAC=∠ACD
mà ∠BAC và ∠ACD là 2 góc so le trong của AB và CD
➞AB song song với CD (tại ko có kí hiệu nên mk viết tạm nha Tuấn)
mà AD song song với BC (GT)
➜ABCD là HBH (tứ giác có 2 cặp cạnh song song là HBH)
ta cần thêm vào △ABC là ∠BAC vuông
⇒ta có △ABC vuông cân tại A để ABKC là h.vuông