K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

a: XétΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

6 tháng 5 2021

a, Do tam giác ABC cân tại A(gt) => AB=AC

Do AH\(\perp\)BC(gt)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^o\left(cmt\right)\)

AB=AC(cmt)

AH chung 

=> tam giác ABH=tam giác ACH(ch-cgv)

b, Do tam giác ABH=tam giác ACH(câu a)

\(\)=> HB=HC (2 cạnh tương ứng)

Do tam giác ABC cân tại A(gt)=> \(\widehat{ABC}=\widehat{ABC}\)

Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\)(kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\)(kề bù)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB=AC(câu a)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

=>tam giác ABM và tam giác ACN(c.g.c)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

\(\Rightarrow\Delta AMN\) cân tại A

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

$BH, CK$ cùng vuông góc với $AN$ thì nó song song nhau. Như vậy thì $BH, CK$ làm sao giao nhau tại $O$ được?

Em xin lỗi, em chép sai đề bài. Còn đúng ra là \(BH\perp AM\), em có sửa lại đề bài rồi ạ!

a) Sửa đề: ΔABC\(\sim\)ΔANM

Xét ΔABC vuông tại A và ΔANM vuông tại A có

\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)

Do đó: ΔABC\(\sim\)ΔANM(c-g-c)

b) Ta có: ΔABC\(\sim\)ΔANM(cmt)

nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)

mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

20 tháng 12 2021

a: Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

20 tháng 12 2021

a: Xét ΔABI và ΔACI có 

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

24 tháng 12 2021

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó;ΔABM=ΔACN

Suy ra: \(\widehat{M}=\widehat{N}\)

Xét ΔEBM vuông tại E và ΔFCN vuông tại F có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔEBM=ΔFCN

Suy ra: \(\widehat{EBM}=\widehat{FCN}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

và HB=HC

nên A,H,I thẳng hàng

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha