cho x^2+2y^2+z^2-3x+z+2xy-2yz-xz+5=0.Tính Q=x+y+z
giúp mk nha
thanks mn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x2 + 2y2 + z2 − 2xy − 2yz + xz − 3x − z + 5 = 0
<=>\(\left(x-\frac{2y+3}{2}\right)^2\) + \(\left(y-\frac{z+3}{2}\right)^2\)+ \(\frac{1}{2}\).( z - 1 )2=0
<=> \(\hept{\begin{cases}x=3\\y=2\\z=1\end{cases}}\)
Do đó: S= 33 + 27 + 12010 = 156
b, x2 +y2+z2 +2x-4y-6z+14=0
<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0
<=> (x+1)2+(y-2)2+(z-3)2=0
=>(x+1)2=(y-2)2=(z-3)2=0
=>x+1=y-2=z-3=0
=> x=-1; y=2; z=3
c, 2x2+y2-6x-4y+2xy+5=0
<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0
<=> (x+y-2)2+(x-1)2=0
=> (x+y-2)2=(x-1)2=0
=>x+y-2=x-1=0
=>x=1; y=1
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)