K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

A B C N M E

a) Xét tứ giác AMCE có 

Hai đường chéo AC và ME cắt nhau tại N là trung điểm của mỗi đường

> Tứ giác AMCE là hình bình hành

=> CE = AM, CE // AM

b) Vì CE = AM mà AM = MB 

=> EC = BM

C) Xét tam giác ABC có 

AM = MB; AN = NC 

=> MN là đường trung bình của tam giác ABC

=> MN = 1/2BC; MN // BC

13 tháng 1 2023

a) Xét ∆AMN và ∆DCN:

MN = ND (gt)

Góc N1 = Góc N2 (hai góc đối đỉnh

AN = NC ( N là trung điểm của AC)

=> ∆AMN = ∆DCN (c-g-c)

=> AM = CD (dpcm)

b)

Ta có: M,N lần lượt là trung điểm của AB, AC

=> MN là đường trung bình của ∆ABC

=> MN = 1/2BC

19 tháng 6 2020

tự kẻ hình nha

a) xét tam giác AMN và tam gáic CEN có

AN=NC(gt)

MN=NE(gt)

ANM=CNE( đối đỉnh)

=> tam giác AMN= tam giác CEN(cgc)

=> AM=CE(hai cạnh tương ứng) mà AM=MB=> MB=CE

=> CEN=AMN(hai góc tương ứng)

mà CEN so le trong với AMN mà A,M,B thẳng hàng=> MB//CE

c) từ MB//CE=> BMC=MCE( so le trong)

xét tam giác BMC và tam gíac ECM có

MC chung

BMC=MCE(cmt)

MB=CE(cmt)

=> tam gíac BMC= tam giác ECM(ccg)

d) từ tam giác BMC= tam giác CEM=> BCM=EMC( hai góc tương ứng), ME=BC( hai cạnh tương ứng)

mà BCM so le trong với EMC=> MN//BC

vì MN=NE mà ME=BC(cmt)

=> BC=2MN=> MN=1/2BC

18 tháng 1 2016

tic cho mình hết âm nhé

18 tháng 1 2016

trả lời hộ mình đi 

 

a: Xét tứ giác CEAM có

N là trung điểm chung của CA vàEM

nên CEAM là hình bình hành

Suy ra: CE//AM và CE=AM

b: Xét ΔABC có

M là trung điểmc ủa AB

N la trung điểm của AC
Do đó: MN là đường trung bình

=>MN//BC và MN=1/2BC

18 tháng 12 2021

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

MB=MC

Do đó: ΔABM=ΔACM

28 tháng 1 2021

Sao MB // NG?? 

1 tháng 12 2019

a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :

+) \(MN=ND\left(gt\right).\)

+) \(AN=NC.\)

+) Góc \(ANM\)= Góc \(NCD.\)

\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)

\(\Rightarrow CD=AM.\)

Mà \(AM=BM.\)

\(\Rightarrow CD=BM.\)

b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)

\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)

c/ Ta có \(MN=\frac{1}{2}BC.\)

\(\Rightarrow2MN=BC.\)

\(\Leftrightarrow MD=BC.\)

Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)

\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.

\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)

\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)

#Riin