K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

16 tháng 9 2019

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

15 tháng 1 2017

Tam giác BDH vuông tại D có DM là đường trung tuyến nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi

30 tháng 7 2020

Bài này hơi khó nên không chắc nhé bạn ==*

A D B M H N C E G

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE ( tính chất hình chữ nhật )

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

AH2 = HB . HC = 4 . 9 = 36 => AH = 6 ( cm )

Vậy DE = 6 ( cm )

b. *Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Ta có : \(\widehat{GDH}=\widehat{GHD}\left(1\right)\)

           \(\widehat{GDH}+\widehat{MDH}=90^o\left(2\right)\)

           \(\widehat{GHD}+\widehat{MHD}=90^o\left(3\right)\)

Từ (1) (2) và (3) , suy ra : \(\widehat{MDH}=\widehat{MHD}\left(4\right)\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MD=MH\left(5\right)\)

Ta lại có : \(\widehat{MDH}+\widehat{MDB}=90^o\left(6\right)\)

               \(\widehat{MBD}+\widehat{MHD}=90^o(\Delta BHD\)vuông tại D ) ( 7 )

Từ (4) (6) và (7) , suy ra : \(\widehat{MDB}=\widehat{MBD}\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MB=MD\left(8\right)\)

Từ (5) và (8) , suy ra : \(MB=MH\)hay M là trung điểm của BH

*\(\Delta GHE\)cân tại G

Ta có : \(\widehat{GHE}=\widehat{GEH}\left(9\right)\)

           \(\widehat{GHE}+\widehat{NHE}=90^o\left(10\right)\)

           \(\widehat{GEH}+\widehat{NEH}=90^o\left(11\right)\)

Từ (9) (10) và (11) , suy ra : \(\widehat{NHE}=\widehat{NEH}\left(12\right)\)

\(\Rightarrow\Delta NEH\)cân tại N => NE = NH ( 13 )

Lại  có : \(\widehat{NEC}+\widehat{NEH}=90^o\left(14\right)\)

            \(\widehat{NHE}+\widehat{NCE}=90^o(\Delta CEH\)vuông tại E ) ( 15 )

Từ (12) (14) và (15) , suy ra : \(\widehat{NDC}=\widehat{NCE}\)

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

c. Tam giác BDH vuông tại D có DM là đường trung tuyến nên :

\(DM=\frac{1}{2}BH=\frac{1}{2}.4=2\left(cm\right)\)

\(\Delta CEH\)vuông tại E có EN là đường trung tuyến nên :

\(EN=\frac{1}{2}CH=\frac{1}{2}.9=4,5\left(cm\right)\)

Mà \(MD\perp DE\)và \(NE\perp DE\)nên MD // NE

Suy ra tứ giác DENM là hình thang

Vậy : \(S_{DENM}=\frac{DM+NE}{2}.DE=\frac{2+4,5}{2}.6=19,5\left(cm^2\right)\)

22 tháng 10 2019

Tứ giác ARHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.

Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6

Nên DE = 6cm

Đáp án cần chọn là : D

23 tháng 8 2021

giúp em với ạ.Em cảm ơn nhiềuu

 

b: Ta có: BC=BH+HC

nên BC=4+9

hay BC=13cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}cm\\AC=3\sqrt{13}cm\end{matrix}\right.\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{3\sqrt{13}}{13}\)

\(\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\)

\(\tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{3}{2}\)

\(\cot\widehat{ABC}=\dfrac{AB}{AC}=\dfrac{2}{3}\)