Chứng minh rằng: nếu x0 một nghiệm của đa thức P(x)=ax+b ( a khác 0) thì P(x) =a(x-x0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = ax+ b = 0 =
=> ãx = -b => x = -b / a = x0
1/ x0 = 1/-b/a = a/-b thay vao Q(x) ta co
Q(x) = b. -a /b + a = -a + a = 0
Vậy x0 là nghiệm của P(x)=ax+b (a khác 0, b khác 0) thì 1/x0 là nghiệm của đa thức Q(x)=bx+a
P(x) = ax0+ b = 0 [Vì x0 là nghiệm của P(x)]
\(\Rightarrow ax_0=-b\Rightarrow b=-ax_0\)
Ta có:\(P\left(x\right)=ax+b\)
\(Thay:b=-ax_0\)
\(\Rightarrow P\left(x\right)=-ax_0+a=a.\left(x-x_0\right)\)
Akai HarumaMashiro ShiinaNguyễn Huy TúngonhuminhĐỗ Thanh Hải
help tui
P(x) có hai nghiệm x1, x2 khác nhau => P(x1) = 0 và P(x2) = 0
=> P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x2 khác 0)
Mà P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0
Vậy a = b = 0