K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0

⇒  a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b  (*)

a > 0, b > 0 ⇒ a.b > 0 ⇒ 1/ab > 0

Nhân hai vế của (*) với 1/ab ta có:

Bài 29 trang 53 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

21 tháng 4 2018

\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2+b^2-2ab\ge0\)\(\Leftrightarrow a^2+b^2\ge0\)

\(\Rightarrow\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}\)\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

21 tháng 4 2018

Sửa để: \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)

15 tháng 1 2019

Mình đang cần gấp nên các bạn giúp mình với

20 tháng 3 2022

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

10 tháng 7 2016

Tìm x,y biết: 

x.(y-3)=-12

10 tháng 7 2015

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1

25 tháng 4 2018

Với a > 0, b > 0, c > 0, d > 0 ta có:

a < b ⇒ ac < bc (1)

c < d ⇒ bc < bd (2)

Từ (1) và (2) suy ra: ac < bd.

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số