K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật

\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)

\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)

Do đó BIDC là hình thang

Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI

Do đó \(\Delta ABI\) cân tại B

Suy ra BC là trung trực cũng là phân giác

Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)

Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)

Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)

Vậy BIDC là hình thang cân

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

13 tháng 12 2021

a: Xét tứ giác ABDC có 

E là trung điểm của BC

E là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

b: Xét ΔAED có AH/AE=AM/AD

nên HM//ED

=>ED//CB

Xet ΔCAE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAE can tại C

=>CA=CE=BD

Vì BC//ED và BD=CE
nên BCDE là hình thang cân

c: Xét tứ giác AHCK có

N là trung điểm chung của AC và HK

góc AHC=90 độ

=>AHCK là hình chữ nhật

18 tháng 12 2020

B A C M D E

18 tháng 12 2020

A, Xét tứ giác ABCD có

MB=MC=1/2BC(M là trung điểm BC-gt)

MD=MA=1/2AD( M là trung điểm AD-gt)

mà AD cắt BC tại M

->ABCD là hbh

Ta có ABCD là hình bh ( cmt)

mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)

-> ABCD là hcn(Đpcm)

B, Gọi I là giao điêm của AB và EM 

Ta có góc BIM=90 độ( do M đối E qua AB-gt)

          góc BAC = 90 độ( tam giác ABC vuông tại A-gt)

 mà hai góc vị trí đồng vị

-> IM song song AC

Xét tam giác  BAC có

M là trung điểm BC(gt)

IM song song AC( cmt)

-> I là trung điểm AB

Ta có

IA=IB=1/2AB( I là trung điểm AB-cmt)

IE=IM=1/2EM(M đối E qua AB-gt)

mà EM cắt AB tại I

-> EAMB là hình bình hành

Mà AB vuông góc EM ( M đối E qua AB-gt)

-> EAMB là hình thoi( đpcm)

Xong rùi nha bnoaoa      

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

20 tháng 4 2020

a) xét tứ giác ABDC có:

M là trung điểm của BC

M là trung điểm của AD (D đối xứng A qua M)

=> tứ giác ABDC là bình hành

xét hình bình hành ABDC có: \(\widehat{BAC}\)=90o

=> ABDC là hình chữ nhật

b) không hiểu lắm