K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

bạn lấy tên trong truyện SHIN à

3 tháng 2 2016

minh moi hok lop 6 thoi @online nha ban

12 tháng 4 2019

A B C P E D Q F R

            ( Hình ko chính xác đâu nha )

                                CM

Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)

\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)

\(\Rightarrow DR\)là đường trung trực BC ( tc)

          mà tam giác DBC cân tại D ( gt)

\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)

\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)

Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)

                      \(=30^0+30^0\)

                      \(=60^0\)mà BD = BR (cmt)

\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )

Vì \(\Delta APB\)đều ( gt)

\(\Rightarrow BP=BA\left(đn\right)\)

Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(1\right)\)

Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)

 Xét \(\Delta BPD\)và \(\Delta BAR\)có:

       \(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)

CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )

\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)

Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)

Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)

   mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)

\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)

                \(=360^0-\widehat{BDC}-\widehat{BRC}\)

                \(=360^0-120^0-120^0\)

               \(=120^0\)

       

(Chỗ này mình hướng dẫn bạn tự làm típ  nhé)

từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200

\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)

\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)

Dễ thấy EQ=EC nên PF=CE.

     

12 tháng 4 2019

mình hiểu rồi thanks bạn nhiều 

4 tháng 2 2018

a)   \(\Delta ABC\)cân tại   \(A\)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\)   ;     \(AB=AC\)

mà    \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\)  (kề bù)

\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)

Xét:   \(\Delta ABM\)và     \(\Delta ACN\)có:

      \(AB=AC\)(cmt)

     \(\widehat{ABM}=\widehat{ACN}\)(cmt)

     \(BM=CN\)(gt)

suy ra:    \(\Delta ABM=\Delta ACN\)(c.g.c)

\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta AMN\)cân tại   \(A\)

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC

đợi minkf tí

minhf không vẽ hình nha