Câu 1: Tìm x, biết 2x - 20 = 0
Câ 2: Rút gọn biểu thức (x-2)^2 - x(x-4)
Caau: Phân tích đa thức x^2 + 2xy + y^2 - 49 thành phân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
\(2,=x^2-3^2=\left(x-3\right)\left(x+3\right)\\ 3,=\left(x+y-x+y\right)\left(x+y+x-y\right)\\ =2y\cdot2x=4xy\)
câu 1.
P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
P= (x+y+x-y)^2-(2y)^2
P=(2x-2y)(2x+2y)
P=4(x^2-y^2)
câu 2.
a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2
=x(x-1)^2-4xy^2
=x(x-1-2y)(x-1+2y)
b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+4= a
Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24
= a^2+2a-24
=a^2+2a+1-25
= (a+1)^2-5^2
= (a+1-5)(a+1+5)
= (a-4)(a+6)
mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)
= (x^2+5x)(x^2+5x+10)
câu3. (x+2)^2= 4-x^2
=> (x+2)^2-4+x^2=0
=>. (x+2)^2-(2-x)(2+x)=0
=> (x+2)(x+2-2+x)=0
=> (x+2)2x=0
=> x+2=0 hoặc 2x=0
=> x=-2 hoặc x=0
1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 . 3) <=> x^2+4x+4-4+x^2=0
<=> 2x^2+4x=0 <=>2x(x+2)=0 <=>2x=0 hay x+2=0 <=>x=0 hay x=-2
Bài 6:
c: \(9x^2+6x+1=\left(3x+1\right)^2\)
d: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
e: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)
\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)
\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)
\(=-7x-13\)
2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)
\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)
3. \(2x^3-x^2+2x-1=0\)
\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)
Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)
\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Bài 1.
B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3
= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )
= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1
= -7x - 13
Bài 2.
64 - x2 - y2 + 2xy
= 64 - ( x2 - 2xy + y2 )
= 82 - ( x - y )2
= ( 8 - x + y )( 8 + x - y )
Bài 3.
2x3 - x2 + 2x - 1 = 0
<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0
<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0
<=> ( 2x - 1 )( x2 + 1 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0 ∀ x )
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Bài 1.
Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )
= [ ( x + 2 ) - ( x - 2 ) ]2
= ( x + 2 - x + 2 )2
= 42 = 16
=> B không phụ thuộc vào x
Vậy với x = -4 thì B vẫn bằng 16
Bài 2.
4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2
Bài 3.
Ta có : \(A=\frac{3}{2}x^2+2x+3\)
\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)
\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)
Dấu "=" xảy ra khi x = -2/3
=> MinA = 7/3 <=> x = -2/3
\(1,\Leftrightarrow x=10\\ 2,=x^2-4x+4-x^2+4x=4\\ 3,=\left(x+y\right)^2-49=\left(x+y+7\right)\left(x+y-7\right)\)
Câu 1 :
\(2x-20=0\)
\(2x=0+20\)
\(2x=20\)
\(2.x=20\)
\(x=20:2\)
\(x=10\)