K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)

\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)

\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)

=>2n>1000

mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)

vậy n=10

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

27 tháng 2 2016

cho tam giác ABC ( góc BAC= 90 độ ) , AH vuông góc với BC.gọi E và F lần lượt là các điểm đối xứng của H qua AB;AC . đường thẳng EF cắt B;C lần lượt tại M và N .

CMR : a) AE=AF

B) HA là phân giác của góc MHN

c) Chung minh : CM song song với EH

cho : 2bx - 3cy /a= 3cx-az/2b = ay-abx/3c 

chứng minh rằng : x/a=y/2b=z/3c

N
5 tháng 5 2016

A= 1+ 1/2 + 1/22 + ... + 1/22012 

﴾1/2﴿A= 1/2+1/22+...+1/22013

A‐﴾1/2﴿A= ﴾1+ 1/2 + 1/22 + ... + 1/22012 ﴿ ‐ ﴾ 1/2+1/22+...+1/22013 ﴿

﴾1/2﴿A = 1 ‐ 1/22013 

A= ﴾1‐ 1/22013 ﴿ : 1/2

A= 2 ‐ 1/22012

5 tháng 5 2016

\(A=2-\frac{1}{2^{2012}}\)

17 tháng 10 2017
Chứng minh S>2.căn của (n+1) -2 Vì [S]=2 suy ra S<3 =>2. căn của(n+1)-2<3 => căn của n+1<5/2 => n+1<25/4 n <21/4 =>n < hoặc = 5 xét trường hợp n nguyên dương từ đến 5 tìm [S] thỏa mãn
5 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}=\frac{1}{x^2+y^2}+\frac{2}{4xy}+\frac{1}{4xy}\)

\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{1}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{1}{4\cdot\frac{1}{4}}=4+1=5\)

Xảy ra khi \(x=y=\frac{1}{2}\)