K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Gọi CTHH của phân tử là: \(Na_2CO_3.nH_2O\)

Theo đề, ta có: \(\dfrac{106}{106+18n}.100\%=37,07\%\)

\(\Leftrightarrow n\approx10\)

Vậy CTHH của phân tử là: Na2CO3.10H2O

Chọn C

27 tháng 7 2021

nhường em kiếm cơm đi

1) ĐKXĐ: \(x\ge0\)

2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

3) ĐKXĐ: \(x\ge4\)

4) ĐKXĐ: \(x>16\)

5) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)

6) ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\)

7) ĐKXĐ: \(\left[{}\begin{matrix}1\le x\\x< 3\end{matrix}\right.\)

8) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x>3\end{matrix}\right.\)

9) ĐKXĐ: \(x\in R\)

10) ĐKXĐ: \(x\in R\)

11) ĐKXĐ: \(x\in R\)

12) ĐKXĐ: \(x\in R\)

13) ĐKXĐ: \(x\in R\)

14) ĐKXĐ: \(x\in R\)

15) ĐKXĐ: \(x\in R\)

16) ĐKXĐ: \(x\ne-\dfrac{1}{2}\)

17) ĐKXĐ: \(x\ge7\)

18) ĐKXĐ: \(x\ge-5\)

14 tháng 1 2022

đề đâu???

14 tháng 1 2022

Đề đâu em

13 tháng 5 2021

Cảm ơn chị nhiều lắm ạ 

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 6:

a. \(A=[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}(\sqrt{x}-1)}].(\sqrt{x}-1)\)

\(=\sqrt{x}+\frac{2}{\sqrt{x}}=\frac{x+2}{\sqrt{x}}\)

b. Áp dụng BĐT Cô-si cho các số dương:

$A=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$

Vậy gtnn của $A$ là $2\sqrt{2}$. Giá trị này đạt tại $x=2$

 

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 7:

a.

\(x=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=1\)

Khi đó: \(B=\frac{1+3}{1+8}=\frac{4}{9}\)

b. \(A=\frac{(\sqrt{x}+1)(\sqrt{x}+3)+\sqrt{x}(2\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}-\frac{x+6\sqrt{x}+2}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{3x+3\sqrt{x}+3-(x+6\sqrt{x}+2)}{(\sqrt{x}+3)(2\sqrt{x}-1)}=\frac{2x-3\sqrt{x}+1}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{(2\sqrt{x}-1)(\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

c.

\(P=AB=\frac{\sqrt{x}+3}{x+8}.\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-1}{x+8}\)

Áp dụng BĐT Cô-si:

$x+16\geq 8\sqrt{x}$

$\Rightarrow x+8\geq 8(\sqrt{x}-1)$

$\Rightarrow P\leq \frac{\sqrt{x}-1}{8(\sqrt{x}-1)}=\frac{1}{8}$

Vậy $P_{\max}=\frac{1}{8}$ khi $x=16$