Cho tam giác ABC có góc A= 120 độ, AB = 4 cm, AC = 6cm. Tính độ dài đường trung tuyến AM
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DT
1
DH
29 tháng 8 2019
Hạ MH và BK vuông AC,
Ta thấy MH là đường tr.bình t.g BCK.
Có góc BÂK =60 độ
nên KA =AB/2 =2
và BK =2.căn3
=> MH =BK/2 = căn3.
Mặt khác KC =KA +AC =8
=> KH =KC/2 =4
=> AH =2. T
a lại có AM2 =AH^2+HM^2 =4+3 =7
nên AM = √7
DT
1
9 tháng 11 2016
Áp dụng định lí Cos : \(BC=\sqrt{AB^2+AC^2-2AB.AC.cos\widehat{BAC}}=\sqrt{4^2+6^2-2.4.6.cos120^o}=2\sqrt{19}\) (cm)
\(AM=\sqrt{\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}}=...\)
5 tháng 3 2017
2,65 ( làm tròn đến số thập phân số 2)
kết quả đúng mkf thử rồi
19 tháng 6 2023
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
Hạ BD vuông góc với AC tại D; AH vuông góc với BC tại H
 = 120 độ => BÂD = 60 độ.
AB = 4 => AD = 2; BD = 2sqrt3 => CD = 8
Pytago cho tam giác vuông BCD => BC = 2sqrt19.
Tam giác CHA đồng dạng với tam giác CDB (g.g)
=> CH : CD = CA : CB = AH : BD
Thay các số đã biết vào dãy tỉ số trên => CH = 24:(sqrt19); AH = 6(sqrt57) : 19
CM = 1/2BC = sqrt19
=> HM = CH - CM = 5:(sqrt19)
Pytago cho tam giác vuông AHM => AM = ...
Hạ BD vuông góc với AC tại D; AH vuông góc với BC tại H
 = 120 độ => BÂD = 60 độ.
AB = 4 => AD = 2; BD = 2sqrt3 => CD = 8
Pytago cho tam giác vuông BCD => BC = 2sqrt19.
Tam giác CHA đồng dạng với tam giác CDB (g.g)
=> CH : CD = CA : CB = AH : BD
Thay các số đã biết vào dãy tỉ số trên => CH = 24:(sqrt19); AH = 6(sqrt57) : 19
CM = 1/2BC = sqrt19
=> HM = CH - CM = 5:(sqrt19)
Pytago cho tam giác vuông AHM => AM =
:3