K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

28 tháng 7 2021

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

4 tháng 10 2017

Vì bất kì số nào nhân với 0 cũng bằng 0 nên để 0. (x – 3) = 0 thì x – 3 là số tự nhiên bất kì.

Suy ra: x - 3 ≥ 0 hay x ≥ 3

Do đó, x là số tự nhiên bất kì lớn hơn hoặc bằng 3.

Chọn (D): Số tự nhiên bất kì lớn hơn hoặc bằng 3.

Lưu ý: Lời giải này chỉ đúng khi các em chưa học đến số âm.

15 tháng 8 2016

Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)\(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)

             \(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

 \(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)

15 tháng 8 2016

đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến

3 tháng 1 2018

Nếu tồn tại 3 số nguyên a,b,c thõa mãn

abc+a=-625

abc+b=-633

abc+c=-597

Chỉ có 2 số lẻ thì tích mới là 1 số lẻ

Vì a,b,c là số lẻ 

Nên abc cũng là số lẻ

Mà abc+a là chẵn ko thể bằng số -625 ( số lẻ)

      abc+b  ... tương tự như trên

Nên ko tồn tại số nguyên a b c  thõa mãn đk đề bài đã cho

3 tháng 1 2018

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)     

Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

2 tháng 1 2016

abc = 195

các bạn cho mk vài li-ke cho tròn 230 với 

2 tháng 1 2016

 Không tồn tại a b c thỏa mãn đề 
Do vế sau có ab*ac*7 = a^2*100*7 +... trong khi vế trước hàng trăm chỉ có a mà vế sau hàng trăm lên tới lớn hoặc bằng a^2*7 nên đăng thức không thể tòn tại 
tick nha nếu đúng

15 tháng 2 2019

theo đề  \(-1\le a\le2\Leftrightarrow\left(a-2\right)\left(a+1\right)\le0\Leftrightarrow a^2-a-2\le0\)

tương tự

\(b^2-b-2\le0\)

\(c^2-c-2\le0\)

nên \(a^2-a-2+c^2-c-2+b^2-b-2\le0\)

\(a^2+c^2+b^2-6\le0\Leftrightarrow a^2+c^2+b^2\le6\)

21 tháng 8 2017

Các số tự nhiên a,b,c thỏa mãn ba điều kiện trên là :

Nếu a = 7 thì b = 8 ; c = 9

Còn nếu a = 8 thì b = 9 ; c = 10

CHÚC BẠN HỌC TỐT TRONG NĂM HỌC 2017-2018

          THÂN

Các số tự nhiên a,b,c thỏa mãn ba điều kiện trên là :
\(\orbr{\begin{cases}a=7;b=8;c=9\\a=8;b=9;c=10\end{cases}}\)

TK NHA