tìm y:
11xy=99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2\)
Nhan xet: \(3x^2\ge0;15y^2\ge0\)
=> \(3x^2+15y^2\ge0\) => \(P\ge0\)
GTNN cua P la 0 khi x=y=0
$P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2$
Nhan xet: $3x^2\ge0;15y^2\ge0$
=> $3x^2+15y^2\ge0$ => $P\ge0$GTNN cua P la 0 khi x=y=0
\(\frac{1}{11xy}\sqrt{\frac{121x^2}{y^6}}=\frac{1}{11xy}.\frac{11x}{y^3}=\frac{1}{y^4}\)
Sửa đề: Biết x - y = -3.
\(x^3-y^3-x^2-y^2+11xy\)
= \(\left(x-y\right)^3+3xy\left(x-y\right)-\left(x-y\right)^2-2xy+11xy\)
= \(\left(-3\right)^3+3xy.\left(-3\right)-\left(-3\right)^2+9xy\)
\(=-27-9=-36\)
\(\Leftrightarrow\left(2x-3y\right)^2+xy=\left(xy\right)^2\)
\(\Leftrightarrow\left(2x-3y\right)^2=xy\left(xy-1\right)\)
Do \(xy\left(xy-1\right)\) là 2 số nguyên liên tiếp nên tích của chúng là SCP khi và chỉ khi: \(\left[{}\begin{matrix}xy=0\\xy=1\end{matrix}\right.\)
TH1: \(xy=0\Rightarrow4x^2+9y^2=0\Rightarrow x=y=0\)
TH2: \(xy=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\) thế vào pt đầu đều ko thỏa mãn
\(Q=7x^2y-2xy+\dfrac{1}{2}x^2y-xy+11xy-\dfrac{1}{3}x+\dfrac{1}{3}+\dfrac{2}{3}x-\dfrac{1}{6}\)
\(Q=\dfrac{15}{2}x^2y+8xy-x-\dfrac{1}{6}\)
Q = ( 7x\(^2\)y + \(\dfrac{1}{2}\)x\(^2\)y ) + ( -2xy - xy + 11xy ) +( -\(\dfrac{1}{3}\)x + \(\dfrac{2}{3}\)x ) + ( -\(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) )
= \(\dfrac{15}{2}\)x\(^2\)y + 8xy + \(\dfrac{1}{3}\)x _ \(\dfrac{1}{2}\)
11*y=99
y=99:11
y= 9
CHÚC EM HỌC TỐT NHA^^
Tl
11 x y = 99
y = 99:11
y = 9
day nha em
ht