cho hình vuông ABCD điểm E nằm trg hình vuông đó vẽ hình vuông AEFG sao cho tia AB nằm trong góc GAE chứng minh DE vuông góc vs BG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.
Trên tia đối tia AB lấy P sao cho AP = BE
\(\Delta PAD=\Delta EBA\left(c.g.c\right)\)\(\Rightarrow\widehat{PDA}=\widehat{A_1}\)
Mà \(\widehat{D_1}=\widehat{E_1}\)( c/m )
Ta có : \(\widehat{PDE}+\widehat{DEF}=\widehat{PDA}+\widehat{D_1}+\widehat{FED}=\widehat{A_1}+\widehat{E_1}+\widehat{FED}=90^o\)
\(\Rightarrow EF\perp PD\)
Xét \(\Delta PBC\)và \(\Delta ECD\)có :
PB = EC ; \(\widehat{PBC}=\widehat{ECD}\); BC = CD
\(\Rightarrow\Delta PBC=\Delta ECD\left(c.g.c\right)\)
\(\Rightarrow\widehat{CPB}=\widehat{E_1}\)
Ta có : \(\widehat{CPB}+\widehat{PID}=\widehat{E_1}+\widehat{EIB}=90^o\)
\(\Rightarrow CP\perp ED\)
do đó : F là trực tâm \(\Delta EPD\)
\(\Rightarrow DF\perp EP\) ( 1 )
Xét \(\Delta EPC\)có : \(PB\perp EC;EI\perp CP\) nên I là trực tâm \(\Delta EPC\)
\(\Rightarrow CM\perp EP\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow DF//IM\Rightarrow\frac{MI}{FD}=\frac{EI}{ED}=\frac{EM}{EF}\) ( 3 )
\(IB//CD\Rightarrow\frac{EB}{EC}=\frac{EI}{ED}\) ( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{MI}{FD}=\frac{EB}{EC}\Rightarrow BM//FC\)
\(\Rightarrow BM\perp DE\)
p/s : mệt
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
OD=OE
=>ΔADO=ΔAEO
=>góc DAO=góc EAO
=>AO là phân giác của góc BAC
Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE