1+2+3+4+5+6+7+8+9+..................+100=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề bài ta có :
2(1+2+3+4+5+6+7+8+9+10+11+.....+100)
=2x5050
=10100
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
= (1+3+5+7+9)+(2+4+6+8+10)+(1+3+5+7+9+...+99)+(2+4+6+8+...+100)+(1+3+5+7+9+...+999)+(2+4+6+8+...+1000)
Gọi tên các dãy theo thứ tự sắp xếp là: A;B;C;D;E;F
Số các số hạng của dãy số A là: (9-1):1+1=5 số hạng
Tổng của dãy số A là: (1+9)x5:2= 25
Số các số hạng của dãy số B là: (10-2):2+1=5 số hạng
Tổng của dãy số B là: (2+10)x5:2=30
Số các số hạng của dãy số C là: (99-1):2+1=45 số hạng
Tổng của dãy số C là: (1+99)x45:2=2250
Số các số hạng của dãy số D là: (100-2):2+1=45 số hạng
Tổng của dãy số D là: (2+100)x45:2=2295
Số các số hạng của dãy số E là: (999-1):2+1=500 số hạng
Tổng của dãy số E là: (1+999)x500:2=250000
Số các số hạng của dãy số F là: (1000-2):2+1=500 số hạng
Tổng của dãy số F là: (2+1000)x500:2=250500
Tổng trên là: 25+30+2250+2295+250000+250500=505100
Đ/S: 505100
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
Từ 1 đến 999 có : (999-1) :2 +1=500 ( số)
Vậy 1+3+5+...+999 = ( 999+1) x 500:2 = 250000
Từ 2 đến 100 có : ( 100-2) :2 +1= 50 ( số)
Vậy 2+4+6+....+ 100+ 2+4+6+100= ( 100+2)x50:2 x2= 5100
Từ 1 đến 99 có : ( 99-1) :2 +1 = 50 ( số)
Vậy 1+3+5+...+ 99 = (99+1) x50 :2 = 2500
Vậy 1+3+5+...+999+2+4+6+...+100+1+3+5+...+99+2+4+6+...+100 = 250000+5100+2500=257600
Đáp số : 257600
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
số số hạng : ( 100 - 1 ) : 1 + 1 = 100
tổng : ( 100 + 1 ) x 100 : 2 = 5050
1+2+3+4+5+6+7+8+9+..................+100
=(1+100)*[(100-1)/1+1]/2
=101*100/2
=101*50
=5050