K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Đáp án B

Gọi M,N lần lượt là trung điểm SC, AB

Vì ΔSAB vuông góc tại S nên N là tâm đường tròn ngoại tiếp ΔSAB .

Trong mặt phẳng (MSN) dựng hình chữ nhật MSNO thì ON là trục đường tròn ngoại tiếp ΔSAB và OM là đường trung trực của đoạn SC trong mặt phẳng (OSC)

13 tháng 4 2018

Đáp án đúng : B

Chọn C

NV
17 tháng 4 2022

Do \(SO\perp ABC\Rightarrow\) các tam giác SOA, SOB, SOC đều vuông tại O

Đặt \(SA=SB=SC=a\) , áp dụng Pitago:

\(OA=\sqrt{SA^2-SO^2}=\sqrt{a^2-SO^2}\)

\(OB=\sqrt{SB^2-SO^2}=\sqrt{a^2-SO^2}\)

\(OC=\sqrt{SC^2-SO^2}=\sqrt{a^2-SO^2}\)

\(\Rightarrow OA=OB=OC\Rightarrow O\) là tâm đường tròn ngoại tiếp tam giác ABC

30 tháng 5 2021

S A B C H

SH vuông góc (ABC) => AC vuông góc SH, mà AC vuông góc BH nên AC vuông góc (SHB)

=> SB vuông góc AC, kết hợp với SB vuông góc SA => SB vuông góc SC => SA,SB,SC đôi một vuông góc

Từ đó, theo định lì Pytago và BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\):

\(6\left(SA^2+SB^2+SC^2\right)=3\left(AB^2+BC^2+CA^2\right)\ge3.\frac{\left(AB+BC+CA\right)^2}{3}=\left(AB+BC+CA\right)^2\)

27 tháng 5 2021

lol Vc lol

27 tháng 4 2019

Chọn A.

24 tháng 10 2019

Đáp án B

Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được: