K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Đáp án A

10 tháng 4 2019

Đáp án C

Ta có : PT <=> log2 |cos x| – 2mlog|cos x| – m2 + 4 = 0

Đặt t = log|cos x|;  t ∈ ( - ∞ ; 0 ]

Khi đó: t2 – 2mt – m2 + 4 = 0 (*)

PT đã cho vô nghiệm <= > (*) vô nghiệm hoặc có nghiệm dương.

12 tháng 11 2021

\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

12 tháng 11 2021

:V ủa thầy giải đc toán 10

23 tháng 3 2017

Đáp án C

15 tháng 6 2019

NV
6 tháng 2 2021

\(\Leftrightarrow\left(m^2+2m+1\right)x-\left(7m-5\right)x=m-1\)

\(\Leftrightarrow\left(m^2-5m+6\right)x=m-1\)

Pt vô nghiệm khi: \(\left\{{}\begin{matrix}m^2-5m+6=0\\m-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

7 tháng 6 2018

Chọn D

Hệ bất phương trình vô nghiệm  khi và chỉ khi m - 1  3 hay m  4

12 tháng 12 2019

Đáp án là B

24 tháng 11 2021

\(x-4\sqrt{x+3}+m=0\)

\(\Leftrightarrow x+3-4\sqrt{x+3}-3+m=0\left(1\right)\)

\(đăt:\sqrt{x+3}=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-4t-3+m=0\Leftrightarrow f\left(t\right)=t^2-4t-3=-m\left(2\right)\)

\(\left(1\right)-có-2ngo-phân-biệt\Leftrightarrow\left(2\right)có-2ngo-phân-biệt-thỏa:t\ge0\)

\(\Rightarrow f\left(0\right)=-3\)

\(\Rightarrow f\left(t\right)min=\dfrac{-\Delta}{4a}=-7\Leftrightarrow t=2\)

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

15 tháng 12 2021

\(t^2-4t-3+m=0\Leftrightarrow t^2-4t-3=-m\)

\(có-2nghiệm-pb-trên[0;\text{+∞})\)

\(xét-bảng-biến-thiên-củaf\left(t\right)=t^2-4t-3,trên[0;\text{+∞})\)

f(t) 0 2 +∞ -∞ -3 -7 -m -m t

dựa vào bảng biến thiên ta thấy số nghiệm của phương trình f(t)

là số giao điểm của đường thẳng y=-m 

\(\Rightarrow-7< -m\le-3\Leftrightarrow3\le m< 7\)

 

16 tháng 2 2018

Điều kiện:

cos x # 0 ⇔ x # π 2 + k π , k ∈ ℝ .

Ta có:

Đặt t=log|cosx|. Do 0 < | cos x | ≤ 1  nên log cos x ≤ 0  hay t ∈ ( - ∞ ; 0 ]

Phương trình trở thành t 2 - 2 m t - m 2 + 4 = 0 *

∆ ' = m 2 + m 2 - 4 = 2 m 2 - 4

Phương trình đã cho vô nghiệm nếu và chỉ nếu phương trình (*) vô nghiệm hoặc có 2 nghiệm (không nhất thiết phân biệt) t 1 , t 2  thỏa mãn 0 < t 1 ≤ t 2

TH1: (*) vô nghiệm

TH2: (*) có hai nghiệm thỏa mãn  0 < t 1 ≤ t 2

Kết hợp hai trường hợp ta được  m ∈ - 2 ; 2

Chọn đáp án C.

5 tháng 4 2019

Đáp án A