K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Đáp án A.

f ' x = − 10 x + 14 − 5 x 2 + 14 x − 9  với   1 < x < 9 5 . f ' x < 0 ⇔ − 10 x + 14 0 ⇔ x 14 10 = 7 5 .

Kết hợp với điều kiện thì x ∈ 7 5 ; 9 5 .

17 tháng 9 2023

1) \(y=\dfrac{2x^2+1}{x^2}\)

\(\Rightarrow y'=\dfrac{\left(4x+1\right)x^2-2x\left(2x^2+1\right)}{x^4}\)

\(\Leftrightarrow y'=\dfrac{4x^3+x^2-4x^3-2x}{x^4}\)

\(\Leftrightarrow y'=\dfrac{x^2-2x}{x^4}=\dfrac{x\left(x-2\right)}{x^4}=\dfrac{x-2}{x^3}\)

2) \(f\left(x\right)=\sqrt[]{-5x^2+14x-9}\)

\(\Rightarrow f'\left(x\right)=\dfrac{-10x+14}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-2\left(5x-7\right)}{2\sqrt[]{-5x^2+14x-9}}\)

\(\Leftrightarrow f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}\)

Để \(f'\left(x\right)=0\)

\(f'\left(x\right)=\dfrac{-\left(5x-7\right)}{\sqrt[]{-5x^2+14x-9}}=0\)

\(\Leftrightarrow5x-7=0\)

\(\Leftrightarrow5x=7\)

\(\Leftrightarrow x=\dfrac{7}{5}\)

Vậy tập hợp giá trị để \(f'\left(x\right)=0\) là \(\left\{\dfrac{7}{5}\right\}\)

9 tháng 1 2018

6 tháng 7 2018

14 tháng 1 2019

13 tháng 4 2017

Hàm số DfNy1MReyBZb.pngKy33STu9aqzT.png thì đồng biến trên R.

Khi đó ta có 

Vậy myqTx5cYKuz0.png

 

Chọn B

21 tháng 10 2023

2: ĐKXĐ: x<>1

\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

f'(x)=0

=>x^2-2x=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

1:

\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)

=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)

f'(x)=0

=>\(\left(x-2\sqrt{2}\right)^2=0\)

=>\(x-2\sqrt{2}=0\)

=>\(x=2\sqrt{2}\)

7 tháng 8 2019

Đáp án D 

- Phương pháp: Sử dụng công thức Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) và Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) tính f'(x). Từ đó giải bất phương trình.

- Cách giải:

+ Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Theo đề bài ta có: 2x.f'(x) - f(x) ≥ 0.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Thử các đáp án:

+ Với Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) thuộc tập nghiệm của BPT.

   ⇒ Loại đáp án A, B và C.

1 tháng 10 2018

Đáp án D

- Phương pháp: Sử dụng công thức Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) và Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) tính f'(x). Từ đó giải bất phương trình.

- Cách giải:

+ Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Theo đề bài ta có: 2x.f'(x) - f(x) ≥ 0.

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

+ Thử các đáp án:

+ Với Đề thi Học kì 2 Toán 11 có đáp án (Đề 2) thuộc tập nghiệm của BPT.

   ⇒ Loại đáp án A, B và C.

30 tháng 12 2017

Chọn D.

Ta có:

7 tháng 4 2019