K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

Đáp án A

27 tháng 7 2017

a: Để hàm số đồng biến thì 2m-6>0

hay m>3

b: Phương trình hoành độ giao điểm là:

\(x^2-\left(2m-6\right)x-m+9=0\)

\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)

\(=4m^2-24m+36+4m-36\)

=4m2-20m

Để (P) tiếp xúc với (d) thì 4m(m-5)=0

=>m=0 hoặc m=5

14 tháng 4 2022

sao bạn không giải câu c

15 tháng 12 2022

a: Để hàm số nghịch biên thì m-2<0

=>m<2

b: Thay x=3 và y=0 vào (d), ta đc:

3(m-2)+m+3=0

=>3m-6+m+3=0

=>4m-3=0

=>m=3/4

c: Tọa độ giao điểm là

2x-1=-x+2 và y=-x+2

=>x=1 và y=1

Thay x=1 và y=1 vào (d), ta được:

m-2+m+3=1

=>2m+1=1

=>m=0

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

NV
23 tháng 4 2022

\(\left(m^2-3m-5\right)x-y-2m+19=0\)

\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)

Ta có: 

\(f'\left(x\right)=-3x^2+4x-1\)

\(f'\left(2\right)=-5\)

Phương trình tiếp tuyến tại A:

\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)

Để hai đường thẳng song song: 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)

\(\Leftrightarrow m=0\)