Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0

\(f\left(x\right)=e^{sinx}-sinx-1\)
\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)
\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)
\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)
\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)

Chọn A
Ta có:
Với nên f(x) đồng biến trên
ℝ
Với nên f(x) nghich biến trên
ℝ
Suy ra: Vì f(x) nghich biến trên
ℝ
nên
và
Từ đây ,ta suy ra:
=> chọn đáp án A
Đáp án B
Ta có: f ' x = 1 − 1 x 2 = x 2 − 1 x 2 ≥ 0 ∀ x ∈ 1 ; 4 do đó hàm số đồng biến trên đoạn 1 ; 4
Do đó M i n 1 ; 4 f x . M ax 1 ; 4 f x = f 1 . f 4 = 17 2 .