K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Chọn B.

Phương pháp: 

Để tìm GTNN, GTLN của hàm số f trên đoạn [a;b] ta làm như sau:

- So sánh các giá trị vừa tìm được. Số lớn nhất trong các giá trị đó chính là GTLN của f trên [a;b] số nhỏ nhất trong các giá trị đó chính là GTNN của f trên [a;b] 

21 tháng 5 2018

4 tháng 10 2017

Giá trị nhỏ nhất của hàm số trên đoạn [-2,3] là điểm thấp nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị nhỏ nhất tại x = -2. Thay x = -2 vào hàm số y đã cho ta có giá trị nhỏ nhất là -2.

Giá trị lớn nhất của hàm số trên đoạn [-2,3] là điểm cao nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị lớn nhất tại x = 3. Thay x = 3 vào hàm số y đã cho ta có giá trị lớn nhất là 3.

13 tháng 8 2017

Đáp án B

19 tháng 1 2019

TXĐ: D = (-∞; 1) ∪ (1; +∞)

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ D.

⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).

⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

17 tháng 2 2017

Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số  trên đoạn [0;5] như sau

Suy ra Và 

Ta có 

Vì f(x)  đồng biến trên đoạn [2;5] nên 

⇒ f(5)>f(0)

Vậy

Chọn đáp án D.

13 tháng 4 2017