K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

 Tính ra nhé

1 tháng 2 2016

Tính lần lượt ra nhé

10 tháng 1 2016

\(=\frac{1}{2}\)

10 tháng 1 2016

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\)
\(\Rightarrow1+2\left(xy+xz+yz\right)=0\)
\(\Rightarrow2\left(xy+xz+yz\right)=-1\Rightarrow xy+xz+yz=-\frac{1}{2}\)
\(\Rightarrow\left(xy+xz+yz\right)^2=\frac{1}{4}\)
\(\Rightarrow x^2y^2+x^2z^2+y^2z^2+2xyz\left(x+y+z\right)=\frac{1}{4}\Rightarrow x^2y^2+x^2z^2+y^2z^2=\frac{1}{4}\)
Có:\(\left(x^2+y^2+z^2\right)^2=1\Rightarrow x^4+y^4+z^4+2\left(x^2y^2+x^2z^2+y^2z^2\right)=1\)
\(\Rightarrow x^4+y^4+z^4+\frac{2.1}{4}=1\Rightarrow x^4+y^4+z^4=\frac{1}{2}\)

15 tháng 5 2017

Dự đoán \(x=y=z=1\) ta tính được \(A=6+3\sqrt{2}\)

Ta sẽ c/m nó là GTLN của A

Thật vậy, ta cần chứng minh \(Σ\left(2+\sqrt{2}-2\sqrt{x}-\sqrt{1+x^2}\right)\ge0\)

\(\LeftrightarrowΣ\left(\frac{2\left(1-x\right)}{1+\sqrt{x}}+\frac{1-x^2}{\sqrt{2}+\sqrt{1+x^2}}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)\left(1+\frac{1}{\sqrt{2}}-\frac{2}{1+\sqrt{x}}-\frac{x+1}{\sqrt{2}+\sqrt{1+x^2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)^2\left(\frac{1}{\left(1+\sqrt{x}\right)^2}-\frac{x+1}{\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

BĐT cuối đủ để chứng minh 

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\ge\left(x+1\right)\left(1+\sqrt{x}\right)^2\)

Đặt \(1+x=2k\sqrt{x}\). Hence, theo Cauchy-Schwarz:

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\)

\(=\sqrt{2}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\)

\(\ge\sqrt{2}\left(\sqrt{2}+\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2}x+\frac{x+1}{\sqrt{2}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(x+3\right)\left(3x+1\right)=\frac{1}{\sqrt{2}}\left(3x^2+10x+3\right)\)

\(=\frac{1}{\sqrt{2}}\left(3\left(4k^2-2\right)x+10x\right)2\sqrt{2}x\left(3k^2+1\right)\)

Mặt khác \(\left(x+1\right)\left(1+\sqrt{x}\right)^2=\left(x+1\right)\left(x+1+2\sqrt{x}\right)\)

\(=2k\left(2k+2\right)x=4k\left(k+1\right)x\). Có nghĩa là ta cần phải c/m

\(3k^2+1\ge\sqrt{2}k\left(k+1\right)\Leftrightarrow\left(3-\sqrt{2}\right)k^2-2\sqrt{k}+1\ge0\)

Nó đúng theo AM-GM

\(\left(3-\sqrt{2}\right)k^2-\sqrt{2}k+1\ge\left(2\sqrt{3-\sqrt{2}}-\sqrt{2}\right)k\ge0\)

Hơi đẹp nhỉ nhưng xong r` đó :D

14 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(x+1\right)^2\)

\(\Leftrightarrow\sqrt{1+x^2}+\sqrt{2}.\sqrt{x}\le\sqrt{2}\left(x+1\right)\) 

tương tự :phần còn lại + thêm với\(\left(2-\sqrt{2}\right)\left(x+y+z\right)\)

5 tháng 7 2016

do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có

 \(\frac{x}{y}+\frac{y}{z}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

Cộng vế theo vế của 3 bất đẳng thức trên ta được

\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)

Cộng 3 vào 2 vế bất đẳng thức 

\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)

Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)

Xong !!!!

T I C K nha cảm ơn nhìu

CHÚC BẠN HỌC TỐT

22 tháng 4 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)

Dấu "=" xảy ra <=> x=y=z=1/3

NV
22 tháng 7 2021

\(P=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(P=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(x^2+y^2+z^2\right)}\)

\(P\ge\dfrac{x^2+y^2+z^2}{10}\ge\dfrac{1}{30}\)

\(P_{min}=\dfrac{1}{30}\) khi \(x=y=z=\dfrac{1}{3}\)

30 tháng 10 2015

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1+y-2+z-3}{2+3+4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{45}{9}=5\)

=>\(\frac{x+y+z-6}{9}=5\Rightarrow x+y+z=45+6=51\)

2 tháng 1 2016

cái thằng lê duy minh ăn hại thì có,5**** 100 phần trăm.

NV
14 tháng 1

TH1: \(x+y+z+t=0\)

\(P=\left(1+\dfrac{x+y}{z+t}\right)^{2023}+\left(1+\dfrac{y+z}{x+t}\right)^{2023}+\left(1+\dfrac{z+t}{x+y}\right)^{2023}+\left(1+\dfrac{t+x}{y+z}\right)^{2023}\)

\(=\left(\dfrac{x+y+z+t}{z+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+t}\right)^{2023}+\left(\dfrac{x+y+z+t}{x+y}\right)^{2023}+\left(\dfrac{x+y+z+t}{y+z}\right)^{2023}\)

\(=0+0+0+0=0\) là số nguyên (thỏa mãn)

TH2: \(x+y+z+t\ne0\), áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2023x+y+z+t}=\dfrac{y}{x+2023y+z+t}=\dfrac{z}{x+y+2023z+t}+\dfrac{t}{x+y+z+2023t}\)

\(=\dfrac{x+y+z+t}{\left(2023x+y+z+t\right)+\left(x+2023y+z+t\right)+\left(x+y+2023z+t\right)+\left(x+y+z+2023t\right)}\)

\(=\dfrac{x+y+z+t}{2026\left(x+y+z+t\right)}=\dfrac{1}{2026}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2023x+y+z+t}=\dfrac{1}{2026}\\\dfrac{y}{x+2023y+z+t}=\dfrac{1}{2026}\\\dfrac{z}{x+y+2023z+t}=\dfrac{1}{2026}\\\dfrac{t}{x+y+z+2023t}=\dfrac{1}{2026}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2026x=2023x+y+z+t\\2026y=x+2023y+z+t\\2026z=x+y+2023z+t\\2026t=x+y+z+2023t\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4x=x+y+z+t\\4y=x+y+z+t\\4z=x+y+z+t\\4t=x+y+z+t\end{matrix}\right.\)

\(\Rightarrow4x=4y=4z=4t\) (vì đều bằng \(x+y+z+t\))

\(\Rightarrow x=y=z=t\)

Do đó:

\(P=\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}+\left(1+\dfrac{x+x}{x+x}\right)^{2023}\)

\(=2^{2023}+2^{2023}+2^{2023}+2^{2023}\)

\(=4.2^{2023}=2^{2025}\in Z\)

NV
14 tháng 1

Em kiểm tra lại đề, 2 ngoặc cuối bị giống nhau, chắc em ghi nhầm