Cho đa giác đều có 20 cạnh. Có bao nhiêu hình chữ nhật (không phải là hình vuông), có các đỉnh là đỉnh của đa giác đều đã cho?
A. 45
B. 35
C. 40
D. 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Phương pháp:
Đa giác đều có n cạnh (với n chẵn) thì luôn tồn tại đường chéo là đường kính của đường tròn ngoại tiếp. Từ đó sử dụng kiến thức về tổ hợp để tính toán.
Cách giải:
Số hình vuông tạo thành từ các đỉnh của đa giác đều 20 cạnh là 20: 4 = 5 hình vuông (do hình vuông có 4 cạnh bằng nhau và 4 góc bằng nhau)
Vì đa giác đều có 20 đỉnh nên có 10 cặp đỉnh đối diện hay có 10 đường chéo đi qua tâm đường tròn ngoại tiếp.
Cứ mỗi 2 đường chéo đi qua tâm đường tròn ngoại tiếp tạo thành một hình chữ nhật nên số hình chữ nhật tạo thành là C 10 2 hình trong đó có cả những hình chữ nhật là hình vuông.
Số hình chữ nhật không phải hình vuông tạo thành là C 10 2 - 5 = 40 hình.
Chọn C
Đa giác đều có 20 cạnh thì sẽ có tất cả 10 đường chéo đi qua tâm của đa giác.
Một hình chữ nhật được tạo thành từ 2 đường chéo đi qua tâm, suy ra số hình chữ nhật được tạo thành là C 10 2
Hình vuông được tạo thành từ 2 đường chéo vuông góc nhau, ta có tất cả 5 cặp đường chéo vuông góc nhau, suy ra có tất cả 5 hình vuông.
Vậy có 40 hình chữ nhật (không phải hình vuông) được tạo thành.
a: Số đường chéo là:
\(\dfrac{24\left(24-3\right)}{2}=12\cdot21=252\)
b: 24 đỉnh =>12 đường kính
chọn 1 đường kính =>Sẽ có 22 điểm còn lại
=>Có 22*12=264 tam giác vuông
a: Số đường chéo là 24*21/2=21*12=336(đường chéo)
b: Số tam giác vuông tạo thành là:12*22=264 tam giác
a. Để tính số đường chéo của một đa giác đều n đỉnh, ta dùng công thức: số đường chéo = n(n-3)/2. Áp dụng vào trường hợp này, ta có số đường chéo của đa giác đều 24 đỉnh là: 24(24-3)/2 = 276 đường chéo.
b. Để lập được một tam giác vuông từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh sao cho 2 trong số đó nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi tam giác vuông sẽ được lập bởi 2 đường kính khác nhau, nên số tam giác vuông lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 tam giác vuông. Tuy nhiên, một số tam giác vuông sẽ bị lặp lại khi ta quay đa giác, do đó số tam giác vuông duy nhất là: 288/24 = 12 tam giác vuông.
c. Để lập được một tam giác đều từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh liên tiếp trên đường tròn ngoại tiếp đa giác. Có tổng cộng 24 cách chọn 3 đỉnh liên tiếp, do đó số tam giác đều lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 tam giác đều.
d. Để lập được một tứ giác từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh bất kỳ. Có tổng cộng C(24,4) cách chọn 4 đỉnh, do đó số tứ giác lập được từ các đỉnh của đa giác đều 24 đỉnh là: C(24,4) = 10626 tứ giác.
e. Để lập được một hình chữ nhật từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh sao cho 2 đỉnh đối diện của hình chữ nhật nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi hình chữ nhật sẽ được lập bởi 2 đường kính khác nhau, nên số hình chữ nhật lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 hình chữ nhật. Tuy nhiên, trong số đó có 24 hình vuông, do đó số hình chữ nhật mà không phải là hình vuông là: 288 - 24 = 264 hình chữ nhật.
Chọn C.
Phương pháp:
Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.
Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật
Cách giải:
Ta vẽ đường tròn ngoại tiếp đa giác đều 2018 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 1009 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là C 1009 2