K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

23 tháng 12 2021

a)  Cho hàm số y = f(x) = -2x + 3.

Ta có: f(-2)= -2.(-2)+3

                 = 4+3=7

Ta có: f(0)= -2.0+3

                = 0+3=3

Ta có: f(\(\dfrac{-1}{2}\))= -2.(-\(\dfrac{1}{2}\))+3

                    =\(\dfrac{-2.\left(-1\right)}{2}\)+3

                    =\(\dfrac{2}{2}\)+3

                    = 1+3= 4

Vậy  f(-2)=7;f(0)=3;f( \(\dfrac{-1}{2}\))=4

b) Cho hàm số y = f(x) = -2x + 3

     mà f(x)=5

     Suy ra:        f(x) = -2x + 3=5

     hay              -2x + 3=5

                         -2x=5-3

                         -2x=2

                          x=2:(-2)

                          x= -1

 

         Cho hàm số y = f(x) = -2x + 3

               mà f(x)=1

              Suy ra:        f(x) = -2x + 3=1

                hay              -2x + 3=1

                                    -2x=1-3

                                    -2x= -2

                                    x= -2:(-2)

                                    x=1

       Vậy f(x)=5 thì x= -1 và f(x) = 1 thì x=1.

 

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:

a.

$f(-2)=(-2)(-2)+3=7$

$f(0)=(-2).0+3=3$

$f(\frac{-1}{2})=(-2).\frac{-1}{2}+3=4$

b.

$f(x)=-2x+3=5$

$\Rightarrow -2x=2$

$\Rightarrow x=-1$

$f(x)=-2x+3=1$

$\Rightarrow -2x=1-3=-2$

$\Rightarrow x=1$

18 tháng 4 2021

Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải

Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)

\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)

\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)

\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)

\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)

 

a: f(2)=4-3=1

f(0)=-3

22 tháng 12 2021

a, f(1)=-5.1+10=-5+10=5

f(-2)=-5.(-2)+10=10+10=20

b, để hàm số bằng 0 thì:
\(-5x+10=0\\ \Rightarrow-5x=-10\\ \Rightarrow x=2\)

31 tháng 12 2020

Bài 1: 

Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)

Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)

Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được: 

\(f\left(0\right)=2\cdot0^2-5=-5\)

Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(2\right)=2\cdot2^2-5=8-5=3\)

Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)

Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Bài 1:

\(f(x)=2x^2-5\) thì:

$f(1)=2.1^2-5=-3$

$f(-2)=2(-2)^2-5=3$

$f(0)=2.0^2-5=-5$

$f(2)=2.2^2-5=3$

$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$