Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
A. 80640
B. 108864
C. 145152
D. 217728
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Sử dụng quy tắc vách ngăn.
Cách giải:
Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.
Cứ như vậy ta có :
Xếp bạn lớp C thứ hai có 7 cách.
Xếp bạn lớp C thứ ba có 8 cách.
Xếp bạn lớp C thứ tư có 9 cách.
Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9 = 145152 cách.
Xếp 2 học sinh lớp A có 2! cách xếp, khi đó tạo ra 3 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ nhất vào 1 trong 2 khoảng trống không ở giữa 2 bạn lớp A có 2 cách, khi đó tạo ra 4 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ 2 vào 1 trong 3 khoảng trống không ở giữa 2 bạn lớp A có 3 cách, khi đó tạo ra 5 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp B thứ 3 vào 1 trong 4 khoảng trống không ở giữa 2 bạn lớp A có 4 cách, khi đó tạo ra 6 khoảng trống trong đó có 1 khoảng trống giữa 2 bạn lớp A.
Xếp bạn lớp C thứ nhất vào 1 trong 6 khoảng trống (kể cả khoảng trống giữa 2 bạn lớp A) có 6 cách, khi đó tạo ra 7 khoảng trống.
Cứ như vậy ta có :
Xếp bạn lớp C thứ hai có 7 cách.
Xếp bạn lớp C thứ ba có 8 cách.
Xếp bạn lớp C thứ tư có 9 cách.
Vậy số cách xếp 9 học sinh trên thỏa mãn yêu cầu là 2!.2.3.4.5.6.7.8.9=145152 cách.
Chọn đáp án C.
Chọn C
Để xếp 9 em học sinh thành một hàng dọc ta thực hiện ba hành động liên tiếp
* Sắp xếp 3 học sinh lớp B. Có 3! cách.
* Sắp xếp 2 học sinh lớp A đứng cạnh các học sinh lớp B sao cho giữa hai học sinh lớp A không có học sinh lớp B. Có A 4 1 .2! cách.
* Lần lượt sắp xếp 4 học sinh lớp C còn lại đứng cạnh các học sinh trên. Có A 9 4 cách.
Vậy có tất cả 3! A 4 1 .2!. A 9 4
Bình luận: Trong đề thi thử THPT chuyên Thái Nguyên lần 2 trong câu hỏi này không có đáp án 145152 mà thay bởi đáp án 145112. Tôi thiết nghĩ lỗi do người làm đề đã đánh máy nên đã tự ý đổi lại một đáp án khác mà tôi nghĩ chính xác hơn.
Đáp án C
Số cách xếp ngẫu nhiên là 10! cách.=
Ta tìm số cách xếp thoả mãn:
* Trước tiên xếp 2 học sinh lớp A có 2! cách.
Vì giữa hai học sinh lớp A không có học sinh lớp B nên chỉ có thể xếp học sinh lớp C vào giữa hai học sinh lớp A vừa xếp:
* Vậy chọn k ∈ 0 , 1 , 2 , 3 , 4 , 5 học sinh lớp C rồi xếp vào giữa hai học sinh lớp A có A 5 k cách, ta được một nhóm X.
* Xếp 10 - (2+k) = 8- k học sinh còn lại với nhóm X có (9 -k)! cách.
Vậy tất cả có ∑ 2 k = 0 5 ! A 5 k ( 9 - k ) ! = 1451520 cách xếp thỏa mãn
Xác suất cần tính bằng 1451520 10 ! = 2 5
Chọn C
Số cách xếp ngẫu nhiên là 10! cách.
Ta tìm số cách xếp thoả mãn:
* Trước tiên xếp 2 học sinh lớp A có 2! cách.
Vì giữa hai học sinh lớp A không có học sinh lớp B nên chỉ có thể xếp học sinh lớp C vào giữa hai học sinh lớp A vừa xếp:
* Vậy chọn học sinh lớp C rồi xếp vào giữa hai học sinh lớp A có A 5 k cách, ta được một nhóm X.
* Xếp học sinh còn lại với nhóm X có (9-k)! cách.
Vậy tất cả có cách xếp thỏa mãn.
Xác suất cần tính bằng
Đáp án C
Gọi k là số học sinh lớp C ở giữa hai học sinh lớp A với k = 0 ; 1 ; 2 ; 3 ; 4
Chọn 2 học sinh lớp A xếp 2 đầu có 2 ! cách. Chọn k học sinh lớp C xếp vào giữa 2 học sinh lớp A có A 4 k cách. Vậy có 2 ! . A 4 k cách xếp để được hàng A C ... C A ⏟ k
Coi cụm A C ... C A ⏟ k là 1 vị trí cùng với 9 − k + 2 học sinh còn lại thành 8 − k vị trí.
Xếp hàng cho các vị trí này có 8 − k ! cách. Vậy với mỗi k như trên có 2 ! . A 4 k . 8 − k ! cách xếp.
Vậy tổng số cách xếp thỏa mãn đề bài là ∑ k = 0 4 2 ! . A 4 k . 8 − k ! = 145152 cách.