K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Đáp án C

Ta có

  y ' = − 8 x 3 + 8 x = − 8 x ( x 2 − 1 ) ⇒ y ' = 0 ⇔ x = 0, y 0 = − 1 x = ± 1, y 0 = 1

Hàm số có hai điểm cực đại và một điểm cực tiểu.

Chọn phương án C.

AH
Akai Haruma
Giáo viên
2 tháng 12 2021

D sai, vì hệ số góc $a=1>0$, khi $x$ tăng (giảm) thì $y$ tương ứng tăng (giảm) nên hàm đồng biến trên $R$

NV
2 tháng 12 2021

D là khẳng định sai

Đồ thị này cắt trục Ox tại rất nhiều điểm chứ không phải chỉ có 1 điểm

=>Chọn C

11 tháng 9 2018

Chọn D

Ta có

f(x) < 0,  ∀ x ∈ a ; c  nên |f(x)| = –f(x).

Do đó,  S 1 = - ∫ a c f x d x .

Tương tự, f(x) > 0,  ∀ x ∈ a ; c nên |f(x)| = f(x).

Do đó,  S 2 = ∫ c b f x d x .

Vậy  S = - ∫ a c f x d x + ∫ c b f x d x .

28 tháng 10 2017

Đáp án: B.

Xét f(x) = x 3  + m x 2  + x - 5

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

và f(0) = -5 với mọi m ∈ R cho nên phương trình f(x) = 0 luôn có nghiệm dương.

12 tháng 4 2018

Đáp án  C

Các khẳng định đúng là I, III, IV.

14 tháng 3 2018

Đáp án: B.

Xét f(x) = x 3  + m x 2  + x - 5

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

và f(0) = -5 với mọi m ∈ R cho nên phương trình f(x) = 0 luôn có nghiệm dương.

7 tháng 7 2018

Đáp án A

Đồ thị cắt trục tung tại điểm có tung độ âm ⇒ y 0 = d < 0  

Ta có y ' = 3 a x 2 + 3 b x + c , y ' = 0 ⇔ x 1 + x 2 = - 2 b 3 a x 1 . x 2 = c 3 a . Mà y ' > 0 , ∀ x ∈ x 1 , x 2 ⇒ a < 0  

Mặt khác x 1 + x 2 > 0 x 1 . x 2 < 0 ⇒ - 2 b 3 a > 0 c 3 a < 0 ⇔ b > 0 c < 0 .  Vậy a < 0 , b > 0 , c > 0 , d < 0 .

11 tháng 6 2019

23 tháng 10 2018

Đáp án A

Ta có  ∫ 2 x − 4 d x = x 2 − 4 x + C

Thay  x = 0 ⇒ F x = f x = − 4 ⇔ C = − 4

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

Viết lại đoạn cuối:

$\Rightarrow\left{\begin{matrix}x_0^2=1\\x_0^3+x_0^2+y_0-2=0\end{matrix}\right.$ $\Rightarrow \begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$