Trong mp Oxy cho parabol P có tọa độ đỉnh (1;3), phép vị tự tâm I(1;m2), tỉ số k=2 biến P thành P'. Có bao nhiêu tham số nguyên m đẻ P' cắt trục hoành tại 2 điểm phân biệt.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y=ax^2+bx+c\) (với \(a\ne0\)) là một parabol (P):
Có đỉnh S với hoành độ: \(x_S=-\dfrac{b}{2a}\)
Tung độ: \(y_S=-\dfrac{\Delta}{4a}\left(\Delta=b^2-4ac\right)\)
Với hàm số \(y=x^2-2x-1\) ta có: \(a=1;b=-2;c=-1\) thì đỉnh S có toạ độ là:
\(x_S=-\dfrac{b}{2a}=\dfrac{-\left(-2\right)}{2.1}=1\)
\(y_S=-\dfrac{\Delta}{4a}=-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-2\right)^2-4.1.-1}{4.1}=-2\)
Vậy \(S=\left\{1;-2\right\}\)
Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{2}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot\left(-1\right)}{4}=-\dfrac{4+4}{4}=-2\end{matrix}\right.\)
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
bạn ơi đáp án của nó là D(-2;-9). bạn giúp mk giải vs
a) Vẽ lại hình vẽ như dưới đây
Ta có \(AB = 18,x = 3 \Rightarrow A(3;9)\)
Gọi phương trình parabol tổng quát \({y^2} = 2px\)
Thay tọa độ điểm A vào phương trình ta có: \({9^2} = 2p.3 \Rightarrow p = \frac{{27}}{2}\)
Vậy phương trình parabol trên hệ trục tọa độ vừa chọn là \({y^2} = 27x\)
b) Từ câu a) ta có: \(p = \frac{{27}}{2}\)
Suy ra tiêu điểm của parabol là \(F\left( {\frac{{27}}{4};0} \right)\)
Vậy để đèn chiếu được xa phải đặt bóng đèn cách đỉnh của chóa đèn \(\frac{{27}}{4}\) xentimét