chứng minh rằng mọi ước nguyên tố của 1.2.3.....2020 . 2021-1 đều lớn hơn 2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
Gọi 1 ước nguyên tố bất kì của 1.2.3.4.......2011 - 1 là p
Nếu p \(\le\) 2011 thì 1.2.3.4.......2011 chia hết cho p
mà 1x2x3x.........x2011-1 chia hết cho p
=> 1 chia hết cho p (vô lí).
Vậy p > 2011
Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...
A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)
Gọi ước chung lớn nhất của
22021 + 32021 và 22022+32022 là d (d\(\in\)N*)
Ta có : \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
Trừ vế với vế ta được 32022 - 2.32021 ⋮ d
⇒ 32021.( 3 - 2) ⋮ d
⇒ 32021 ⋮ d
⇒ d \(\in\){ 1; 3; 32; 33;........32021)
nếu d \(\in\) { 3; 32; 33;.....32021) thì
⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )
vậy d = 1
Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)