1 .Chứng Minh Rằng : Tổng của 3 số nguyên liên tiếp là bội của 3
2.Chứng Minh Rằng : Tổng của 5 số nguyên liên tiếp là bội của 5
các bạn giúp mình với
/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a) Gọi 3 số đó là a ;a+1;a+2
Ta có: a+a+1+a+2=3a+3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luon chia hết cho 3
b) Gọi 5 số đó là a;a+1;a+2;a+3;a+4
Ta có: a+a+1+a+2+a+3+a+4 =5a+5
5 chia hết cho 5 => 5a chia hết cho 5
=> Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5
Câu 2 :Tụ làm nhé , mk chịu lun à
- Gọi 3 số nguyên liên tiếp đó lần lượt là : \(2k-1;2k;2k+1\left(k\in R\right)\)
\(\Rightarrow\Sigma=2k+1+2k+2k-1=6k⋮3\)
Vậy ...đpcm
G/s 3 số tự nhiên liên tiếp đó có dạng: k ; k+1 ; k+2 (k là số nguyên)
Khi đó ta có:
k + (k+1) +(k+2) = 3k + 3 = 3(k+1) chia hết cho 3
=> đpcm
Bội của 6 tức là chia hết cho 6
Chia hết cho 6 thì số đó sẽ chia hết cho cả 2 và 3( vì ƯCLN của 2 và 3 =1)
Bạn cần cm chia hết cho 2 và 3
Mà số đó chẵn => chia hết cho 2
Bn cm chia hết cho 3 nữa là được
mk hướng dẫn thôi, bn tự làm nha
goi so nguyen do la x
.) ta co : x+x+1+x+2 =3x+3
=3(x+1) chia het cho 3
vay tong cua 3 so tu nhien lien thi chia het cho 3
.) ta co : x+x+1+x+2+x+4+x+5=5x+5
=5(5+1) chia het cho 5
gọi 3 số đó là a: a+1 a+2
ta có a+ a+1+ a+2=3a+3
3 chia hết cho 3
suy ra 3a chia hết cho 3
suy ra 3a+3 chia hết cho 3
syu ra tổng của 3 số nguyên liên tiếp chia hết cho 3
tương tự chia hết cho 5
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google
Gọi 3 số đó là:n,n+1,n+2
Ta có:n+(n+1)+(n+2)=n+n+1+n+2=3n+3 chia hết cho 3
=>n+(n+1)+(n+2) là bội của 3
=>đpcm
duong nhien la vay