Cho biểu thức A = ( -a - b + c ) - ( -2.a - 2.b - c ) Rút gọn A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c\)
\(=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(=0+2b+0\)
\(=2b\)
b) \(A=2b=2.\left(-1\right)=-2\)
A=(-a+b-c)-(-a-b-c)
A=-a+b-c+a+b+c
A=(-a+a)+(b+b)-(c-c)
A=0+2b-0
A=2b
B=(-2a+3b-ac)-(-2a-3b-4c)
B=-2a+3b-ac+2a+3b+4c
B=(-2a+2a)-(3b-3b)-(ac-4c)
B=ac-4c
B=(a-4)c
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
A=-a+b+c+2a+2b+c
=a+3b+2c
A = ( -a - b + c ) - ( -2.a - 2.b - c )
A = -a -b + c - 2.a + 2.b + c
A = -3a + ( -3b )
A = -3 . ( a+b )