Tìm hệ số của số hạng x 10 trong khai triển biểu thức 3 x 3 − 2 x 2 5
A. Hàm số đồng biến trên (1;2)
B. Hàm số đồng biến trên các khoảng − ∞ ; − 1 và 1 ; + ∞
C. Hàm số nghịch biến trên (-1;2)
D. Hàm số nghịch biến trên (-1;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x^3+1\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^2-x^3\right)^k=\sum\limits^{10}_{k=0}C_{10}^k\sum\limits^k_{i=0}C_k^i.\left(x^2\right)^i.\left(-x^3\right)^{k-i}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^k.C_k^i.\left(-1\right)^{k-i}.x^{3k-i}\)
Số hạng chứa \(x^{10}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le k\le0\\0\le i\le k\\3k-i=10\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(2;4\right);\left(5;5\right)\)
\(\Rightarrow\) Hệ số: \(C_{10}^4.C_4^2+C_{10}^5.C_5^5=...\)
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
Đáp án C