K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

Đáp án D

Có hình chiếu của AC'  xuống đáy là AC  mà  A C ⊥ B D nên  A C ' ⊥ B D   .

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:A. \({30^ \circ }\).                 B. \({45^ \circ }\).                 C. \({60^ \circ }\).                  D. \({90^ \circ }\).b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:A. 1.                                            B. 2....
Đọc tiếp

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).

a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:

A. 1.                                            

B. 2.                                            

C. \(\sqrt 2 \).                         

D. \(\frac{1}{{\sqrt 2 }}\).

c) Số đo của góc nhị diện \(\left[ {N,MM',P} \right]\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

d) Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {NQQ'N'} \right)\) bằng:

A. \(a\).                                    

B. \(\frac{a}{{\sqrt 2 }}\).  

C. \(a\sqrt 2 \).                      

D. \(\frac{a}{2}\).

1
22 tháng 8 2023

a) Đáp án:B

b) Đáp án:D

c) Đáp án:B

d) Đáp án:B

24 tháng 8 2019

Đáp án D.

Cách 1: Gọi I là giao điểm của  BC' và B'C  . Trong B C ' D '  kẻ I H ⊥ B D '  tại H.

Ta có 

B C ' ⊥ B ' C D ' C ' ⊥ B ' C B C ' , D ' C ' ∈ B C ' D ' ⇒ B ' C ⊥ B C ' D ' ⇒ B ' C ⊥ I H

Suy ra IH là đường vuông góc chung của BD' và B ' C ⇒ d B D ' , B ' C = I H .

Hai tam giác vuông BC'D' và BHI đồng dạng

⇒ I H D ' C ' = B I B D ' = a 2 2 a 3 = 6 6 ⇒ I H = a 6 6

 Ta chọn D.

Cách 2: (Tọa độ hóa . Độc giả tự thực hiện)

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

10 tháng 5 2019

Đáp án D

Có hình chiếu của AC' xuống đáy là AC mà AC ⊥ BC nên AC'BD. 

16 tháng 12 2017

 

Đáp án D

Gọi I là giao điểm của AC và BD

A I ⊥ B D A I ⊥ B B ' ⇒ A I ⊥ B B ' D ' D

=> B’I là hình chiếu vuông góc của AB’ lên (BB’D’D)

7 tháng 5 2019

Đáp án A.

Đặt  B ' 0 ; 0 ; 0 , A ' a ; 0 ; 0 , C ' 0 ; a ; 0 , B 0 ; 0 ; a ⇒ A a ; 0 ; a

Ta có  B ' A → = a ; 0 ; a , B C ' → = 0 ; a ; − a , B ' B → = 0 ; 0 ; a

⇒ B ' A → , B C ' → = − a 2 ; a 2 ; a 2 ; B ' A → , B C ' → . B B ' → = a 3

d B ' A , B C ' = B ' A → , B C ' → . B B ' → B ' A → , B C ' → = a 3 3 a 4 = a 3 a 2 3 = a 3 3