K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Đáp án C

Ta có

  f ' x = − m s i n   x + 2 cos x − 3 ; y ' = 0 ⇔ − m s i n   x + 2 cos x = 3  

Phương trình này giải được với điều kiện là

m 2 + 2 2 ≥ 3 2 ⇔ m 2 ≥ 5 ⇔ m ∈ − ∞ ; − 5 ∪ 5 ; + ∞

NV
21 tháng 1

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1

e cảm ơn ạ

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

NV
19 tháng 4 2021

\(f'\left(x\right)=3x^2-4x\)

\(f'\left(x\right)>0\Leftrightarrow3x^2-4x>0\Rightarrow\left[{}\begin{matrix}x>\dfrac{4}{3}\\x< 0\end{matrix}\right.\)

\(f'\left(2\right)=4\) ; \(f\left(2\right)=0\)

Phương trình tiếp tuyến:

\(y=4\left(x-2\right)+0\Leftrightarrow y=4x-8\)

9 tháng 10 2019

2 tháng 4 2020

1/ ycbt <=> ac < 0
<=> (m-2).(m+3) < 0 <=> m2 + m - 6 < 0
<=> -3 < x < 2
Vậy m ∈ (-3;2) thì pt có 2 nghiệm trái dấu

2 tháng 4 2020

2/ ycbt <=> \(\left\{{}\begin{matrix}\Delta'>0\\s>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-6>0\\2m>0\\m+3>0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m>6\\m>-2\\m>-3\end{matrix}\right.\)
<=> m > 6

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
17 tháng 3 2022

:)))