Ta co
A= 999993^1999 -555557^1997
Chung minh rang
A chia het cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A= 9999931999- 5555571997
= 9999931998 . 999993 - 5555571996 . 555557
= ( 9999932)999 . 999993- ( 555552)998 . 555557
= (....9)999 . 999993 - (....9)998 . 555557
= (....9) . 999993 - (....1) . 555557
= (...7) - (...7)
= (...0)
Chữ số tận cùng của A= 0
=> A chia hết cho 5 ( đpcm)
Chúc bạn học tốt nhoa...!
\(\)Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(....1\right).555557\)
\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow\) Chữ số tận cùng của A là \(0\)
\(\Rightarrow A⋮5\)
~ Chúc bn học tốt ~
Tôi giải hơi dài 1 tí , anh hãy cố gắng đọc:
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Nguồn : Câu hỏi tương tự
a) 57^1999 = 57^1996+3 = 57^1996.57^3 = 57^4.499.57^3
= (57^4)^499.57^3 = (...1)^499.57^3 = (...1).185193 = (...3)
Vậy 57^1999 có chữ số tận cùng là 3
9999931993 có tận cùng là 7
5555571997 có tận cùng là 7
-> A có tận cùng là 0 -> a chia hết cho 5
ủng hộ mình nhé ☺
9999931999ta xet 31999
31999=31996.33=(34)499.27=81499.27
81499co chu so tan cung la 1 nen 81499.27 co chu so tan cung la 7
vay 9999931999co chu so tan cung la 7
5555571997 ta xet 71997
71997=71996.7=(74)499.7=2401499.72401
2401499co chu so tan cung la 1 nen 2401499.7 co chu so tan cung la 7
vay 5555571997 co chu so tan cung la 7
ta co 9999931999-5555571997co chu so tan cung la 0
suy ra A chia het cho 5
tìm các chữ số tận cùng của hai số trên ta có :
A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)
Có 999993^1 có chữ số tận cùng là 3
999993^2 có cstc là 9
999993^3 có cstc là 7
999993^ co cstc là 1
...
555557^1 có cstc là 7
555557^2 có cstc là 9
555557^3 có cstc là 3
555557^ 4 có cstc là 1
....
Có 999993^1999= 999993^(499*4+3) => 999993 có cstc là 7
555557^1997=555557^(499*4+1) => 555557^1997 có cstc là 7
Mà 7-7=0
=> A chia hết cho 5
=> ( đpcm)
dễ ợt nhuwnh tôi ko biết