K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

Đáp án C

23 tháng 3 2019

Đáp án A

Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:

26 tháng 7 2019

Chọn A

Đồ thị của hàm số liên tục trên các đoạn , lại có là một nguyên hàm của .

Do đó diện tích của hình phẳng giới hạn bởi các đường:

là: 

.

Tương tự: diện tích của hình phẳng

giới hạn bởi các đường: là: 

.

Mặt khác, dựa vào hình vẽ ta có: .

Từ (1), (2) và (3) ta chọn đáp án A. 

 

( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )

20 tháng 9 2019

Đáp án C

Phương pháp:

+)  đồng biến trên (a;b)

+)  nghịch biến trên (a;b)

Cách giải:

Quan sát đồ thị của hàm số y = f’(x), ta thấy:

+)  đồng biến trên (a;b) => f(a) > f(b)

+)  nghịch biến trên (b;c) => f(b)<f(c)

Như vậy, f(a)>f(b), f(c)>f(b)

Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn

6 tháng 6 2019

Đáp án B.

Phương pháp :  Ứng dụng tích phân để tính diện tích hình phẳng.

Cách giải:

6 tháng 11 2018

Đáp án B.

3 tháng 4 2018

Đáp án là A

12 tháng 8 2017

21 tháng 7 2019

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

16 tháng 2 2018

Đáp án A

Phương trình hoành độ giao điểm của (C) và Ox là  x 4 − m x 2 + m = 0     * .

Đặt t = x 2 ≥ 0  khi đó  * ⇔ f t = t 2 − m t + m = 0

Để (*) có 4 nghiệm phân biệt ⇔ f t = 0 có 2 nghiệm dương phân biệt t 1 , t 2  

Khi đó, gọi t 1 , t 2    t 1 < t 2  là hai nghiệm phân biệt của  f t = 0

Suy ra:

x 1 = − t 2 ; x 2 = − t 1 ; x 3 = t 1 ; x 4 = t 2 ⇒ x 1 4 + x 2 4 + x 3 4 + x 4 4 = 2 t 1 2 + t 2 2 = 30  

Mà t 1 + t 2 = m t 1 t 2 = m  

⇒ t 1 2 + t 2 2 = t 1 + t 2 2 − 2 t 1 t 2 = m 2 − 2 m

suy ra  m > 4 m 2 − 2 m = 15 ⇔ m = 5.