K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

2 tháng 1 2020

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

Với x = –2 ta có: y = –3 và y'(2) = 2.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

19 tháng 4 2023

Đặt \(y=f(x)=x^3+2x^2+x-1 \)

\(f'(x)=3x^2+4x+1\)

Phương trình tiếp tuyến của đồ thị hàm số y tại M là:

\(y=f'(x_m)(x-x_m)+f(x_m)=f'(1)(x-1)+f(1)=8(x-1)+3=8x-5 \)

 

18 tháng 2 2019

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)

Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm

Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)

k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)

Với \(x_0=0\) ta có pt tiếp tuyến:

\(d:3x+y-2=0\)

Với \(x_0=-2\) ta có pt tiếp tuyến:

\(d:3x+y+10=0\)

a: Tọa độ giao điểm của (d) với trục Ox là:

y=0 và (-x+2)=0

=>x=2 và y=0

\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)

Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3

y-f(x0)=f'(x0)(x-x0)

=>y-0=-1/3(x-2)

=>y=-1/3x+2/3

b: Tọa độ giao của (d) với trục Oy là;

x=0 và y=(-0+2)/(0+1)=2

Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)

y-f(x0)=f'(x0)(x-x0)

=>y-2=-3(x-0)

=>y=-3x+2

f'(x)=y'=-3x^2+2x

f'(2)=-3*2^2+2*2=-3*4+4=-8

f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5

y=f(2)+f'(2)(x-2)

=-5+(-8)(x-2)

=-8x+16-5

=-8x+11

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(y'\left(1\right)=-\dfrac{1}{1^2}=-1\)

Phương trình tiếp tuyến của đồ thị hàm số tại điểm N(1;1) là:

\(y=-1\left(x-1\right)+1=-x+2\)

18 tháng 5 2019

Đáp án là B