K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

Đáp án B

22 tháng 9 2023

a) Gọi \(O = AC \cap B{\rm{D}}\)

\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}} \Rightarrow AO \bot B{\rm{D}}\)

\(AA' \bot \left( {ABCD} \right) \Rightarrow AA' \bot AO\)

\( \Rightarrow d\left( {B{\rm{D}},AA'} \right) = AO = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)

b) Tam giác \(OAB\) vuông tại \(O\)

\(\begin{array}{l} \Rightarrow BO = \sqrt {A{B^2} - A{O^2}}  = \frac{a}{2} \Rightarrow B{\rm{D}} = 2BO = a\\{S_{ABC{\rm{D}}}} = \frac{1}{2}AC.B{\rm{D}} = \frac{{{a^2}\sqrt 3 }}{2}\\{V_{ABC.A'B'C'}} = {S_{ABC{\rm{D}}}}.AA' = \frac{{3{a^3}}}{4}\end{array}\)

20 tháng 3 2018

Đáp án A

1 tháng 7 2017

Giải bài 7 trang 49 sgk Hình học 12 | Để học tốt Toán 12

28 tháng 11 2017

cho hình hộp ABCD.A'B'C'D' có các cạnh đều =a. góc BAD =60•, BAB' =DAD'=120•.tính góc giữa đường thẳng AB và A'D',AC',B'D.tính diện tích A'B'CD và A'CC'A'

27 tháng 5 2019

Đáp án A

Qua N vẽ EK song song với A D E ∈ A B , K ∈ D C .

Qua M vẽ MQ song song với  A ' D ' Q ∈ D ' C '

Ta có A A ' D ' D / / E M Q K ,mà H P ⊂ A A ' D ' D , M N ⊂ E M Q K  nên

d M N , H P = d A A ' D ' D , E M Q K = 1 2 d A ' A D D ' , B ' B C C ' = 1 2 B H = 1 2 a 3 2 = a 3 4 .

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Diện tích tam giác ABD bằng diện tích tam giác BCD vì chung đáy BD và chiều cao AO = OC (ABCD là hình thoi)

Diện tích tam giác ABD: \({S_{ABD}} = \frac{1}{2}AB.AD.\sin \widehat {BAD} = \frac{1}{2}a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{4}\)

\( \Rightarrow S = 2{S_{ABD}} = \frac{{{a^2}\sqrt 3 }}{2}\)

Thể tích khối hộp là \(V = AA'.{S_{ABCD}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\)

b) Gọi \(AC \cap BD = \left\{ O \right\}\)

Ta có \(AA' \bot BD,AO \bot BD \Rightarrow BD \bot \left( {A'AO} \right);BD \subset \left( {A'BD} \right) \Rightarrow \left( {A'AO} \right) \bot \left( {A'BD} \right)\)

\(\left( {A'AO} \right) \cap \left( {A'BD} \right) = A'O\)

Trong (A’AO) kẻ \(AE \bot A'O\)

\( \Rightarrow AE \bot \left( {A'BD} \right) \Rightarrow d\left( {A,\left( {A'BD} \right)} \right) = AE\)

Xét tam giác ABD có AB = AD và \(\widehat {BAD} = {60^0}\) nên tam giác ABD đều

\( \Rightarrow OA = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác AOA’ vuông tại A có

\(\frac{1}{{A{E^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{O{A^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{7}{{3{a^2}}} \Rightarrow AE = \frac{{a\sqrt {21} }}{7}\)

Vậy \(d\left( {A,\left( {A'BD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\)